// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "stack.h" extern SigTab runtime·sigtab[]; int32 runtime·open(uint8*, int32, int32); int32 runtime·close(int32); int32 runtime·read(int32, void*, int32); static Sigset sigset_all = { ~(uint32)0, ~(uint32)0 }; static Sigset sigset_none; // Linux futex. // // futexsleep(uint32 *addr, uint32 val) // futexwakeup(uint32 *addr) // // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. // Futexwakeup wakes up threads sleeping on addr. // Futexsleep is allowed to wake up spuriously. enum { FUTEX_WAIT = 0, FUTEX_WAKE = 1, EINTR = 4, EAGAIN = 11, }; // Atomically, // if(*addr == val) sleep // Might be woken up spuriously; that's allowed. // Don't sleep longer than ns; ns < 0 means forever. void runtime·futexsleep(uint32 *addr, uint32 val, int64 ns) { Timespec ts, *tsp; if(ns < 0) tsp = nil; else { ts.tv_sec = ns/1000000000LL; ts.tv_nsec = ns%1000000000LL; // Avoid overflow if(ts.tv_sec > 1<<30) ts.tv_sec = 1<<30; tsp = &ts; } // Some Linux kernels have a bug where futex of // FUTEX_WAIT returns an internal error code // as an errno. Libpthread ignores the return value // here, and so can we: as it says a few lines up, // spurious wakeups are allowed. runtime·futex(addr, FUTEX_WAIT, val, tsp, nil, 0); } // If any procs are sleeping on addr, wake up at most cnt. void runtime·futexwakeup(uint32 *addr, uint32 cnt) { int64 ret; ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0); if(ret >= 0) return; // I don't know that futex wakeup can return // EAGAIN or EINTR, but if it does, it would be // safe to loop and call futex again. runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret); *(int32*)0x1006 = 0x1006; } static int32 getproccount(void) { int32 fd, rd, cnt, cpustrlen; byte *cpustr, *pos, *bufpos; byte buf[256]; fd = runtime·open((byte*)"/proc/stat", O_RDONLY|O_CLOEXEC, 0); if(fd == -1) return 1; cnt = 0; bufpos = buf; cpustr = (byte*)"\ncpu"; cpustrlen = runtime·findnull(cpustr); for(;;) { rd = runtime·read(fd, bufpos, sizeof(buf)-cpustrlen); if(rd == -1) break; bufpos[rd] = 0; for(pos=buf; pos=runtime·strstr(pos, cpustr); cnt++, pos++) { } if(rd < cpustrlen) break; runtime·memmove(buf, bufpos+rd-cpustrlen+1, cpustrlen-1); bufpos = buf+cpustrlen-1; } runtime·close(fd); return cnt ? cnt : 1; } // Clone, the Linux rfork. enum { CLONE_VM = 0x100, CLONE_FS = 0x200, CLONE_FILES = 0x400, CLONE_SIGHAND = 0x800, CLONE_PTRACE = 0x2000, CLONE_VFORK = 0x4000, CLONE_PARENT = 0x8000, CLONE_THREAD = 0x10000, CLONE_NEWNS = 0x20000, CLONE_SYSVSEM = 0x40000, CLONE_SETTLS = 0x80000, CLONE_PARENT_SETTID = 0x100000, CLONE_CHILD_CLEARTID = 0x200000, CLONE_UNTRACED = 0x800000, CLONE_CHILD_SETTID = 0x1000000, CLONE_STOPPED = 0x2000000, CLONE_NEWUTS = 0x4000000, CLONE_NEWIPC = 0x8000000, }; void runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) { int32 ret; int32 flags; Sigset oset; /* * note: strace gets confused if we use CLONE_PTRACE here. */ flags = CLONE_VM /* share memory */ | CLONE_FS /* share cwd, etc */ | CLONE_FILES /* share fd table */ | CLONE_SIGHAND /* share sig handler table */ | CLONE_THREAD /* revisit - okay for now */ ; m->tls[0] = m->id; // so 386 asm can find it if(0){ runtime·printf("newosproc stk=%p m=%p g=%p fn=%p clone=%p id=%d/%d ostk=%p\n", stk, m, g, fn, runtime·clone, m->id, m->tls[0], &m); } // Disable signals during clone, so that the new thread starts // with signals disabled. It will enable them in minit. runtime·rtsigprocmask(SIG_SETMASK, &sigset_all, &oset, sizeof oset); ret = runtime·clone(flags, stk, m, g, fn); runtime·rtsigprocmask(SIG_SETMASK, &oset, nil, sizeof oset); if(ret < 0) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret); runtime·throw("runtime.newosproc"); } } void runtime·osinit(void) { runtime·ncpu = getproccount(); } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). void runtime·minit(void) { // Initialize signal handling. m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024); runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof sigset_none); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); } runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); }