// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build ppc64 ppc64le #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #include "asm_ppc64x.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer // initialize essential registers BL runtime·reginit(SB) SUB $(FIXED_FRAME+16), R1 MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame MOVW R3, FIXED_FRAME+0(R1) // argc MOVD R4, FIXED_FRAME+8(R1) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD $(-64*1024), R31 ADD R31, R1, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) MOVD R3, (g_stack+stack_lo)(g) MOVD R1, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R12 CMP R0, R12 BEQ nocgo MOVD R12, CTR // r12 = "global function entry point" MOVD R13, R5 // arg 2: TLS base pointer MOVD $setg_gcc<>(SB), R4 // arg 1: setg MOVD g, R3 // arg 0: G // C functions expect 32 bytes of space on caller stack frame // and a 16-byte aligned R1 MOVD R1, R14 // save current stack SUB $32, R1 // reserve 32 bytes RLDCR $0, R1, $~15, R1 // 16-byte align BL (CTR) // may clobber R0, R3-R12 MOVD R14, R1 // restore stack MOVD 24(R1), R2 XOR R0, R0 // fix R0 nocgo: // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R3 ADD $const__StackGuard, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R3 // save m->g0 = g0 MOVD g, m_g0(R3) // save m0 to g0->m MOVD R3, g_m(g) BL runtime·check(SB) // args are already prepared BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R3 // entry MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL runtime·newproc(SB) ADD $(16+FIXED_FRAME), R1 // start this M BL runtime·mstart(SB) MOVD R0, 1(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, 2(R0) // TODO: TD RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0 // crosscall_ppc64 and crosscall2 need to reginit, but can't // get at the 'runtime.reginit' symbol. BR runtime·reginit(SB) TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0 // set R0 to zero, it's expected by the toolchain XOR R0, R0 // initialize essential FP registers FMOVD $4503601774854144.0, F27 FMOVD $0.5, F29 FSUB F29, F29, F28 FADD F29, F29, F30 FADD F30, F30, F31 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8 MOVD buf+0(FP), R3 MOVD R1, gobuf_sp(R3) MOVD LR, R31 MOVD R31, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD R0, gobuf_lr(R3) MOVD R0, gobuf_ret(R3) MOVD R0, gobuf_ctxt(R3) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g // make sure g is not nil BL runtime·save_g(SB) MOVD 0(g), R4 MOVD gobuf_sp(R5), R1 MOVD gobuf_lr(R5), R31 MOVD R31, LR MOVD gobuf_ret(R5), R3 MOVD gobuf_ctxt(R5), R11 MOVD R0, gobuf_sp(R5) MOVD R0, gobuf_ret(R5) MOVD R0, gobuf_lr(R5) MOVD R0, gobuf_ctxt(R5) CMP R0, R0 // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R12 MOVD R12, CTR BR (CTR) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 // Save caller state in g->sched MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) BR runtime·badmcall(SB) MOVD fn+0(FP), R11 // context MOVD 0(R11), R12 // code pointer MOVD R12, CTR MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL (CTR) MOVD 24(R1), R2 BR runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 // We have several undefs here so that 16 bytes past // $runtime·systemstack_switch lies within them whether or not the // instructions that derive r2 from r12 are there. UNDEF UNDEF UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R11 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMP g, R5 BEQ noswitch MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ noswitch MOVD m_curg(R4), R6 CMP g, R6 BEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R12 MOVD R12, CTR BL (CTR) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVD $runtime·systemstack_switch(SB), R6 ADD $16, R6 // get past prologue (including r2-setting instructions when they're there) MOVD R6, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $FIXED_FRAME, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, R1 // call target function MOVD 0(R11), R12 // code pointer MOVD R12, CTR BL (CTR) // restore TOC pointer. It seems unlikely that we will use systemstack // to call a function defined in another module, but the results of // doing so would be so confusing that it's worth doing this. MOVD g_m(g), R3 MOVD m_curg(R3), g MOVD (g_sched+gobuf_sp)(g), R3 MOVD 24(R3), R2 // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVD R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly MOVD 0(R11), R12 // code pointer MOVD R12, CTR BL (CTR) MOVD 24(R1), R2 RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3: framesize, R4: argsize, R5: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R7 MOVD m_g0(R7), R8 CMP g, R8 BNE 2(PC) BL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R7), R8 CMP g, R8 BNE 2(PC) BL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVD R11, (g_sched+gobuf_ctxt)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R8 MOVD R8, (g_sched+gobuf_pc)(g) MOVD R5, (g_sched+gobuf_lr)(g) // Called from f. // Set m->morebuf to f's caller. MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVD g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVD m_g0(R7), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, R11 BR runtime·morestack(SB) TEXT runtime·stackBarrier(SB),NOSPLIT,$0 // We came here via a RET to an overwritten LR. // R3 may be live. Other registers are available. // Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal. MOVD (g_stkbar+slice_array)(g), R4 MOVD g_stkbarPos(g), R5 MOVD $stkbar__size, R6 MULLD R5, R6 ADD R4, R6 MOVD stkbar_savedLRVal(R6), R6 // Record that this stack barrier was hit. ADD $1, R5 MOVD R5, g_stkbarPos(g) // Jump to the original return PC. MOVD R6, CTR BR (CTR) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R31; \ CMP R3, R31; \ BGT 4(PC); \ MOVD $NAME(SB), R12; \ MOVD R12, CTR; \ BR (CTR) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 BR ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32 MOVWZ argsize+24(FP), R3 // NOTE(rsc): No call16, because CALLFN needs four words // of argument space to invoke callwritebarrier. DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R12 MOVD R12, CTR BR (CTR) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+16(FP), R3; \ MOVWZ argsize+24(FP), R4; \ MOVD R1, R5; \ ADD $(FIXED_FRAME-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ CMP R5, R4; \ BEQ 4(PC); \ MOVBZU 1(R3), R6; \ MOVBZU R6, 1(R5); \ BR -4(PC); \ /* call function */ \ MOVD f+8(FP), R11; \ MOVD (R11), R12; \ MOVD R12, CTR; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (CTR); \ MOVD 24(R1), R2; \ /* copy return values back */ \ MOVD arg+16(FP), R3; \ MOVWZ n+24(FP), R4; \ MOVWZ retoffset+28(FP), R6; \ MOVD R1, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ ADD $(FIXED_FRAME-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ loop: \ CMP R5, R4; \ BEQ end; \ MOVBZU 1(R5), R6; \ MOVBZU R6, 1(R3); \ BR loop; \ end: \ /* execute write barrier updates */ \ MOVD argtype+0(FP), R7; \ MOVD arg+16(FP), R3; \ MOVWZ n+24(FP), R4; \ MOVWZ retoffset+28(FP), R6; \ MOVD R7, FIXED_FRAME+0(R1); \ MOVD R3, FIXED_FRAME+8(R1); \ MOVD R4, FIXED_FRAME+16(R1); \ MOVD R6, FIXED_FRAME+24(R1); \ BL runtime·callwritebarrier(SB); \ RET CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 8 bytes to get back to either nop or toc reload before deferreturn // 3. BR to fn // When dynamically linking Go, it is not sufficient to rewind to the BL // deferreturn -- we might be jumping between modules and so we need to reset // the TOC pointer in r2. To do this, codegen inserts MOVD 24(R1), R2 *before* // the BL deferreturn and jmpdefer rewinds to that. TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16 MOVD 0(R1), R31 SUB $8, R31 MOVD R31, LR MOVD fv+0(FP), R11 MOVD argp+8(FP), R1 SUB $FIXED_FRAME, R1 MOVD 0(R11), R12 MOVD R12, CTR BR (CTR) // Save state of caller into g->sched. Smashes R31. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD R0, (g_sched+gobuf_ret)(g) MOVD R0, (g_sched+gobuf_ctxt)(g) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVD fn+0(FP), R3 MOVD arg+8(FP), R4 MOVD R1, R7 // save original stack pointer MOVD g, R5 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVD g_m(g), R6 MOVD m_g0(R6), R6 CMP R6, g BEQ g0 BL gosave<>(SB) MOVD R6, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers, plus 32 bytes of callee // save area that lives on the caller stack. SUB $48, R1 RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI MOVD R5, 40(R1) // save old g on stack MOVD (g_stack+stack_hi)(R5), R5 SUB R7, R5 MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?) // This is a "global call", so put the global entry point in r12 MOVD R3, R12 MOVD R12, CTR MOVD R4, R3 // arg in r3 BL (CTR) // C code can clobber R0, so set it back to 0. F27-F31 are // callee save, so we don't need to recover those. XOR R0, R0 // Restore g, stack pointer, toc pointer. // R3 is errno, so don't touch it MOVD 40(R1), g MOVD (g_stack+stack_hi)(g), R5 MOVD 32(R1), R6 SUB R6, R5 MOVD 24(R5), R2 BL runtime·save_g(SB) MOVD (g_stack+stack_hi)(g), R5 MOVD 32(R1), R6 SUB R6, R5 MOVD R5, R1 MOVW R3, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$24-24 MOVD $fn+0(FP), R3 MOVD R3, FIXED_FRAME+0(R1) MOVD frame+8(FP), R3 MOVD R3, FIXED_FRAME+8(R1) MOVD framesize+16(FP), R3 MOVD R3, FIXED_FRAME+16(R1) MOVD $runtime·cgocallback_gofunc(SB), R12 MOVD R12, CTR BL (CTR) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-24 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R3 CMP R3, $0 BEQ nocgo BL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP g, $0 BNE havem MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needm(SB), R12 MOVD R12, CTR BL (CTR) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R3 MOVD m_g0(R3), R3 MOVD R1, (g_sched+gobuf_sp)(R3) havem: MOVD g_m(g), R8 MOVD R8, savedm-8(SP) // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP). MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD R1, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -16(SP) and -8(SP) are unused. MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -(FIXED_FRAME+16)(R4) MOVD $-(FIXED_FRAME+16)(R4), R1 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(R1), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD $(FIXED_FRAME+16)(R1), R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVD savedm-8(SP), R6 CMP R6, $0 BNE droppedm MOVD $runtime·dropm(SB), R12 MOVD R12, CTR BL (CTR) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET // void setg_gcc(G*); set g in C TLS. // Must obey the gcc calling convention. TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 // The standard prologue clobbers R31, which is callee-save in // the C ABI, so we have to use $-8-0 and save LR ourselves. MOVD LR, R4 // Also save g and R31, since they're callee-save in C ABI MOVD R31, R5 MOVD g, R6 MOVD R3, g BL runtime·save_g(SB) MOVD R6, g MOVD R5, R31 MOVD R4, LR RET TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16 MOVD FIXED_FRAME+8(R1), R3 // LR saved by caller MOVD runtime·stackBarrierPC(SB), R4 CMP R3, R4 BNE nobar // Get original return PC. BL runtime·nextBarrierPC(SB) MOVD FIXED_FRAME+0(R1), R3 nobar: MOVD R3, ret+8(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16 MOVD pc+8(FP), R3 MOVD FIXED_FRAME+8(R1), R4 MOVD runtime·stackBarrierPC(SB), R5 CMP R4, R5 BEQ setbar MOVD R3, FIXED_FRAME+8(R1) // set LR in caller RET setbar: // Set the stack barrier return PC. MOVD R3, FIXED_FRAME+0(R1) BL runtime·setNextBarrierPC(SB) RET TEXT runtime·getcallersp(SB),NOSPLIT,$0-16 MOVD argp+0(FP), R3 SUB $FIXED_FRAME, R3 MOVD R3, ret+8(FP) RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R0 UNDEF #define TBRL 268 #define TBRU 269 /* Time base Upper/Lower */ // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-8 MOVW SPR(TBRU), R4 MOVW SPR(TBRL), R3 MOVW SPR(TBRU), R5 CMPW R4, R5 BNE -4(PC) SLD $32, R5 OR R5, R3 MOVD R3, ret+0(FP) RET // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24 GO_ARGS NO_LOCAL_POINTERS MOVD p+0(FP), R3 MOVD h+8(FP), R4 MOVD 8(R11), R5 MOVD R3, FIXED_FRAME+0(R1) MOVD R4, FIXED_FRAME+8(R1) MOVD R5, FIXED_FRAME+16(R1) BL runtime·memhash(SB) MOVD FIXED_FRAME+24(R1), R3 MOVD R3, ret+16(FP) RET // AES hashing not implemented for ppc64 TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·memeq(SB),NOSPLIT|NOFRAME,$0-25 MOVD a+0(FP), R3 MOVD b+8(FP), R4 MOVD size+16(FP), R5 SUB $1, R3 SUB $1, R4 ADD R3, R5, R8 loop: CMP R3, R8 BNE test MOVD $1, R3 MOVB R3, ret+24(FP) RET test: MOVBZU 1(R3), R6 MOVBZU 1(R4), R7 CMP R6, R7 BEQ loop MOVB R0, ret+24(FP) RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17 MOVD a+0(FP), R3 MOVD b+8(FP), R4 CMP R3, R4 BEQ eq MOVD 8(R11), R5 // compiler stores size at offset 8 in the closure MOVD R3, FIXED_FRAME+0(R1) MOVD R4, FIXED_FRAME+8(R1) MOVD R5, FIXED_FRAME+16(R1) BL runtime·memeq(SB) MOVBZ FIXED_FRAME+24(R1), R3 MOVB R3, ret+16(FP) RET eq: MOVD $1, R3 MOVB R3, ret+16(FP) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-33 MOVD s1str+0(FP), R3 MOVD s2str+16(FP), R4 MOVD $1, R5 MOVB R5, ret+32(FP) CMP R3, R4 BNE 2(PC) RET MOVD s1len+8(FP), R5 SUB $1, R3 SUB $1, R4 ADD R3, R5, R8 loop: CMP R3, R8 BNE 2(PC) RET MOVBZU 1(R3), R6 MOVBZU 1(R4), R7 CMP R6, R7 BEQ loop MOVB R0, ret+32(FP) RET // TODO: share code with memeq? TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVD a_len+8(FP), R3 MOVD b_len+32(FP), R4 CMP R3, R4 // unequal lengths are not equal BNE noteq MOVD a+0(FP), R5 MOVD b+24(FP), R6 SUB $1, R5 SUB $1, R6 ADD R5, R3 // end-1 loop: CMP R5, R3 BEQ equal // reached the end MOVBZU 1(R5), R4 MOVBZU 1(R6), R7 CMP R4, R7 BEQ loop noteq: MOVBZ R0, ret+48(FP) RET equal: MOVD $1, R3 MOVBZ R3, ret+48(FP) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 MOVD s+0(FP), R3 MOVD s_len+8(FP), R4 MOVBZ c+24(FP), R5 // byte to find MOVD R3, R6 // store base for later SUB $1, R3 ADD R3, R4 // end-1 loop: CMP R3, R4 BEQ notfound MOVBZU 1(R3), R7 CMP R7, R5 BNE loop SUB R6, R3 // remove base MOVD R3, ret+32(FP) RET notfound: MOVD $-1, R3 MOVD R3, ret+32(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0-32 MOVD p+0(FP), R3 MOVD b_len+8(FP), R4 MOVBZ c+16(FP), R5 // byte to find MOVD R3, R6 // store base for later SUB $1, R3 ADD R3, R4 // end-1 loop: CMP R3, R4 BEQ notfound MOVBZU 1(R3), R7 CMP R7, R5 BNE loop SUB R6, R3 // remove base MOVD R3, ret+24(FP) RET notfound: MOVD $-1, R3 MOVD R3, ret+24(FP) RET TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40 MOVD s1_base+0(FP), R5 MOVD s1_len+8(FP), R3 MOVD s2_base+16(FP), R6 MOVD s2_len+24(FP), R4 MOVD $ret+32(FP), R7 BR runtime·cmpbody<>(SB) TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56 MOVD s1+0(FP), R5 MOVD s1+8(FP), R3 MOVD s2+24(FP), R6 MOVD s2+32(FP), R4 MOVD $ret+48(FP), R7 BR runtime·cmpbody<>(SB) // On entry: // R3 is the length of s1 // R4 is the length of s2 // R5 points to the start of s1 // R6 points to the start of s2 // R7 points to return value (-1/0/1 will be written here) // // On exit: // R5, R6, R8, R9 and R10 are clobbered TEXT runtime·cmpbody<>(SB),NOSPLIT|NOFRAME,$0-0 CMP R5, R6 BEQ samebytes // same starting pointers; compare lengths SUB $1, R5 SUB $1, R6 MOVD R4, R8 CMP R3, R4 BGE 2(PC) MOVD R3, R8 // R8 is min(R3, R4) ADD R5, R8 // R5 is current byte in s1, R8 is last byte in s1 to compare loop: CMP R5, R8 BEQ samebytes // all compared bytes were the same; compare lengths MOVBZU 1(R5), R9 MOVBZU 1(R6), R10 CMP R9, R10 BEQ loop // bytes differed MOVD $1, R4 BGT 2(PC) NEG R4 MOVD R4, (R7) RET samebytes: MOVD $1, R8 CMP R3, R4 BNE 3(PC) MOVD R0, (R7) RET BGT 2(PC) NEG R8 MOVD R8, (R7) RET TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 MOVD g_m(g), R4 MOVWZ m_fastrand(R4), R3 ADD R3, R3 CMPW R3, $0 BGE 2(PC) XOR $0x88888eef, R3 MOVW R3, m_fastrand(R4) MOVW R3, ret+0(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R3 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 // g (R30) and R31 are callee-save in the C ABI, so save them MOVD g, R4 MOVD R31, R5 MOVD LR, R6 BL runtime·load_g(SB) // clobbers g (R30), R31 MOVD g_m(g), R3 MOVD m_curg(R3), R3 MOVD (g_stack+stack_hi)(R3), R3 MOVD R4, g MOVD R5, R31 MOVD R6, LR RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. // // When dynamically linking Go, it can be returned to from a function // implemented in a different module and so needs to reload the TOC pointer // from the stack (although this function declares that it does not set up x-a // frame, newproc1 does in fact allocate one for goexit and saves the TOC // pointer in the correct place). // goexit+_PCQuantum is halfway through the usual global entry point prologue // that derives r2 from r12 which is a bit silly, but not harmful. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 MOVD 24(R1), R2 BL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit MOVD R0, R0 // NOP TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8 RET TEXT runtime·sigreturn(SB),NOSPLIT,$0-8 RET // prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the // module containing runtime) to the frame that goexit will execute in when // the goroutine exits. It's implemented in assembly mainly because that's the // easiest way to get access to R2. TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8 MOVD sp+0(FP), R3 MOVD R2, 24(R3) RET TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0 ADD $-8, R1 MOVD R31, 0(R1) MOVD runtime·lastmoduledatap(SB), R4 MOVD R3, moduledata_next(R4) MOVD R3, runtime·lastmoduledatap(SB) MOVD 0(R1), R31 ADD $8, R1 RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R3 MOVB R3, ret+0(FP) RET