// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" #include "../../cmd/ld/textflag.h" // using frame size $-4 means do not save LR on stack. TEXT runtime·rt0_go(SB),NOSPLIT,$-4 MOVW $0xcafebabe, R12 // copy arguments forward on an even stack // use R13 instead of SP to avoid linker rewriting the offsets MOVW 0(R13), R0 // argc MOVW 4(R13), R1 // argv SUB $64, R13 // plenty of scratch AND $~7, R13 MOVW R0, 60(R13) // save argc, argv away MOVW R1, 64(R13) // set up g register // g is R10 MOVW $runtime·g0(SB), g MOVW $runtime·m0(SB), R8 // save m->g0 = g0 MOVW g, m_g0(R8) // save g->m = m0 MOVW R8, g_m(g) // create istack out of the OS stack MOVW $(-8192+104)(R13), R0 MOVW R0, g_stackguard(g) // (w 104b guard) MOVW R0, g_stackguard0(g) MOVW R13, g_stackbase(g) BL runtime·emptyfunc(SB) // fault if stack check is wrong #ifndef GOOS_nacl // if there is an _cgo_init, call it. MOVW _cgo_init(SB), R4 CMP $0, R4 B.EQ nocgo MRC 15, 0, R0, C13, C0, 3 // load TLS base pointer MOVW R0, R3 // arg 3: TLS base pointer MOVW $runtime·tlsg(SB), R2 // arg 2: tlsg MOVW $setg_gcc<>(SB), R1 // arg 1: setg MOVW g, R0 // arg 0: G BL (R4) // will clobber R0-R3 #endif nocgo: // update stackguard after _cgo_init MOVW g_stackguard0(g), R0 MOVW R0, g_stackguard(g) BL runtime·checkgoarm(SB) BL runtime·check(SB) // saved argc, argv MOVW 60(R13), R0 MOVW R0, 4(R13) MOVW 64(R13), R1 MOVW R1, 8(R13) BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVW $runtime·main·f(SB), R0 MOVW.W R0, -4(R13) MOVW $8, R0 MOVW.W R0, -4(R13) MOVW $0, R0 MOVW.W R0, -4(R13) // push $0 as guard ARGSIZE(12) BL runtime·newproc(SB) ARGSIZE(-1) MOVW $12(R13), R13 // pop args and LR // start this M BL runtime·mstart(SB) MOVW $1234, R0 MOVW $1000, R1 MOVW R0, (R1) // fail hard DATA runtime·main·f+0(SB)/4,$runtime·main(SB) GLOBL runtime·main·f(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 // gdb won't skip this breakpoint instruction automatically, // so you must manually "set $pc+=4" to skip it and continue. #ifdef GOOS_nacl WORD $0xe125be7f // BKPT 0x5bef, NACL_INSTR_ARM_BREAKPOINT #else WORD $0xe1200071 // BKPT 0x0001 #endif RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // disable runfast (flush-to-zero) mode of vfp if runtime.goarm > 5 MOVB runtime·goarm(SB), R11 CMP $5, R11 BLE 4(PC) WORD $0xeef1ba10 // vmrs r11, fpscr BIC $(1<<24), R11 WORD $0xeee1ba10 // vmsr fpscr, r11 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB),NOSPLIT,$-4-4 MOVW 0(FP), R0 // gobuf MOVW SP, gobuf_sp(R0) MOVW LR, gobuf_pc(R0) MOVW g, gobuf_g(R0) MOVW $0, R11 MOVW R11, gobuf_lr(R0) MOVW R11, gobuf_ret(R0) MOVW R11, gobuf_ctxt(R0) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB),NOSPLIT,$-4-4 MOVW 0(FP), R1 // gobuf MOVW gobuf_g(R1), g MOVW 0(g), R2 // make sure g != nil MOVB runtime·iscgo(SB), R2 CMP $0, R2 // if in Cgo, we have to save g BL.NE runtime·save_g(SB) // this call will clobber R0 MOVW gobuf_sp(R1), SP // restore SP MOVW gobuf_lr(R1), LR MOVW gobuf_ret(R1), R0 MOVW gobuf_ctxt(R1), R7 MOVW $0, R11 MOVW R11, gobuf_sp(R1) // clear to help garbage collector MOVW R11, gobuf_ret(R1) MOVW R11, gobuf_lr(R1) MOVW R11, gobuf_ctxt(R1) CMP R11, R11 // set condition codes for == test, needed by stack split MOVW gobuf_pc(R1), R11 B (R11) // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB),NOSPLIT,$-4-4 // Save caller state in g->sched. MOVW SP, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_pc)(g) MOVW $0, R11 MOVW R11, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVW g, R1 MOVW g_m(g), R8 MOVW m_g0(R8), g CMP g, R1 B.NE 2(PC) B runtime·badmcall(SB) MOVB runtime·iscgo(SB), R11 CMP $0, R11 BL.NE runtime·save_g(SB) MOVW fn+0(FP), R0 MOVW (g_sched+gobuf_sp)(g), SP SUB $8, SP MOVW R1, 4(SP) MOVW R0, R7 MOVW 0(R0), R0 BL (R0) B runtime·badmcall2(SB) RET // switchtoM is a dummy routine that onM leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the M stack because the one at the top of // the M stack terminates the stack walk (see topofstack()). TEXT runtime·switchtoM(SB),NOSPLIT,$0-4 MOVW $0, R0 BL (R0) // clobber lr to ensure push {lr} is kept RET // func onM(fn func()) TEXT runtime·onM(SB),NOSPLIT,$0-4 MOVW fn+0(FP), R0 // R0 = fn MOVW g_m(g), R1 // R1 = m MOVW m_g0(R1), R2 // R2 = g0 CMP g, R2 B.EQ onm MOVW m_curg(R1), R3 CMP g, R3 B.EQ oncurg // Not g0, not curg. Must be gsignal, but that's not allowed. // Hide call from linker nosplit analysis. MOVW $runtime·badonm(SB), R0 BL (R0) oncurg: // save our state in g->sched. Pretend to // be switchtoM if the G stack is scanned. MOVW $runtime·switchtoM(SB), R3 ADD $4, R3, R3 // get past push {lr} MOVW R3, (g_sched+gobuf_pc)(g) MOVW SP, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // switch to g0 MOVW R2, g MOVW (g_sched+gobuf_sp)(R2), SP // call target function ARGSIZE(0) MOVW R0, R7 MOVW 0(R0), R0 BL (R0) // switch back to g MOVW g_m(g), R1 MOVW m_curg(R1), g MOVW (g_sched+gobuf_sp)(g), SP MOVW $0, R3 MOVW R3, (g_sched+gobuf_sp)(g) RET onm: MOVW R0, R7 MOVW 0(R0), R0 BL (R0) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // R1 frame size // R2 arg size // R3 prolog's LR // NB. we do not save R0 because we've forced 5c to pass all arguments // on the stack. // using frame size $-4 means do not save LR on stack. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$-4-0 // Cannot grow scheduler stack (m->g0). MOVW g_m(g), R8 MOVW m_g0(R8), R4 CMP g, R4 BL.EQ runtime·abort(SB) MOVW R1, m_moreframesize(R8) MOVW R2, m_moreargsize(R8) // Called from f. // Set g->sched to context in f. MOVW R7, (g_sched+gobuf_ctxt)(g) MOVW SP, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_pc)(g) MOVW R3, (g_sched+gobuf_lr)(g) // Called from f. // Set m->morebuf to f's caller. MOVW R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC MOVW SP, (m_morebuf+gobuf_sp)(R8) // f's caller's SP MOVW $4(SP), R3 // f's argument pointer MOVW R3, m_moreargp(R8) MOVW g, (m_morebuf+gobuf_g)(R8) // Call newstack on m->g0's stack. MOVW m_g0(R8), g MOVW (g_sched+gobuf_sp)(g), SP BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. RET TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-4-0 MOVW $0, R7 B runtime·morestack(SB) // Called from panic. Mimics morestack, // reuses stack growth code to create a frame // with the desired args running the desired function. // // func call(fn *byte, arg *byte, argsize uint32). TEXT runtime·newstackcall(SB),NOSPLIT,$-4-12 // Save our caller's state as the PC and SP to // restore when returning from f. MOVW g_m(g), R8 MOVW LR, (m_morebuf+gobuf_pc)(R8) // our caller's PC MOVW SP, (m_morebuf+gobuf_sp)(R8) // our caller's SP MOVW g, (m_morebuf+gobuf_g)(R8) // Save our own state as the PC and SP to restore // if this goroutine needs to be restarted. MOVW $runtime·newstackcall(SB), R11 MOVW R11, (g_sched+gobuf_pc)(g) MOVW LR, (g_sched+gobuf_lr)(g) MOVW SP, (g_sched+gobuf_sp)(g) // Set up morestack arguments to call f on a new stack. // We set f's frame size to 1, as a hint to newstack // that this is a call from runtime·newstackcall. // If it turns out that f needs a larger frame than // the default stack, f's usual stack growth prolog will // allocate a new segment (and recopy the arguments). MOVW 4(SP), R0 // fn MOVW 8(SP), R1 // arg frame MOVW 12(SP), R2 // arg size MOVW R0, m_cret(R8) // f's PC MOVW R1, m_moreargp(R8) // f's argument pointer MOVW R2, m_moreargsize(R8) // f's argument size MOVW $1, R3 MOVW R3, m_moreframesize(R8) // f's frame size // Call newstack on m->g0's stack. MOVW m_g0(R8), g MOVW (g_sched+gobuf_sp)(g), SP B runtime·newstack(SB) // reflect·call: call a function with the given argument list // func call(f *FuncVal, arg *byte, argsize uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMP $MAXSIZE, R0; \ B.HI 3(PC); \ MOVW $NAME(SB), R1; \ B (R1) TEXT reflect·call(SB),NOSPLIT,$-4-16 MOVW argsize+8(FP), R0 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVW $runtime·badreflectcall(SB), R1 B (R1) // Argument map for the callXX frames. Each has one // stack map (for the single call) with 3 arguments. DATA gcargs_reflectcall<>+0x00(SB)/4, $1 // 1 stackmap DATA gcargs_reflectcall<>+0x04(SB)/4, $6 // 3 args DATA gcargs_reflectcall<>+0x08(SB)/4, $(const_BitsPointer+(const_BitsPointer<<2)+(const_BitsScalar<<4)) GLOBL gcargs_reflectcall<>(SB),RODATA,$12 // callXX frames have no locals DATA gclocals_reflectcall<>+0x00(SB)/4, $1 // 1 stackmap DATA gclocals_reflectcall<>+0x04(SB)/4, $0 // 0 locals GLOBL gclocals_reflectcall<>(SB),RODATA,$8 #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-16; \ FUNCDATA $FUNCDATA_ArgsPointerMaps,gcargs_reflectcall<>(SB); \ FUNCDATA $FUNCDATA_LocalsPointerMaps,gclocals_reflectcall<>(SB);\ /* copy arguments to stack */ \ MOVW argptr+4(FP), R0; \ MOVW argsize+8(FP), R2; \ ADD $4, SP, R1; \ CMP $0, R2; \ B.EQ 5(PC); \ MOVBU.P 1(R0), R5; \ MOVBU.P R5, 1(R1); \ SUB $1, R2, R2; \ B -5(PC); \ /* call function */ \ MOVW f+0(FP), R7; \ MOVW (R7), R0; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R0); \ /* copy return values back */ \ MOVW argptr+4(FP), R0; \ MOVW argsize+8(FP), R2; \ MOVW retoffset+12(FP), R3; \ ADD $4, SP, R1; \ ADD R3, R1; \ ADD R3, R0; \ SUB R3, R2; \ CMP $0, R2; \ RET.EQ ; \ MOVBU.P 1(R1), R5; \ MOVBU.P R5, 1(R0); \ SUB $1, R2, R2; \ B -5(PC) \ CALLFN(runtime·call16, 16) CALLFN(runtime·call32, 32) CALLFN(runtime·call64, 64) CALLFN(runtime·call128, 128) CALLFN(runtime·call256, 256) CALLFN(runtime·call512, 512) CALLFN(runtime·call1024, 1024) CALLFN(runtime·call2048, 2048) CALLFN(runtime·call4096, 4096) CALLFN(runtime·call8192, 8192) CALLFN(runtime·call16384, 16384) CALLFN(runtime·call32768, 32768) CALLFN(runtime·call65536, 65536) CALLFN(runtime·call131072, 131072) CALLFN(runtime·call262144, 262144) CALLFN(runtime·call524288, 524288) CALLFN(runtime·call1048576, 1048576) CALLFN(runtime·call2097152, 2097152) CALLFN(runtime·call4194304, 4194304) CALLFN(runtime·call8388608, 8388608) CALLFN(runtime·call16777216, 16777216) CALLFN(runtime·call33554432, 33554432) CALLFN(runtime·call67108864, 67108864) CALLFN(runtime·call134217728, 134217728) CALLFN(runtime·call268435456, 268435456) CALLFN(runtime·call536870912, 536870912) CALLFN(runtime·call1073741824, 1073741824) // Return point when leaving stack. // using frame size $-4 means do not save LR on stack. // // Lessstack can appear in stack traces for the same reason // as morestack; in that context, it has 0 arguments. TEXT runtime·lessstack(SB),NOSPLIT,$-4-0 // Save return value in m->cret MOVW g_m(g), R8 MOVW R0, m_cret(R8) // Call oldstack on m->g0's stack. MOVW m_g0(R8), g MOVW (g_sched+gobuf_sp)(g), SP BL runtime·oldstack(SB) // void jmpdefer(fn, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 4 bytes to get back to BL deferreturn // 3. B to fn // TODO(rsc): Push things on stack and then use pop // to load all registers simultaneously, so that a profiling // interrupt can never see mismatched SP/LR/PC. // (And double-check that pop is atomic in that way.) TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8 MOVW 0(SP), LR MOVW $-4(LR), LR // BL deferreturn MOVW fv+0(FP), R7 MOVW argp+4(FP), SP MOVW $-4(SP), SP // SP is 4 below argp, due to saved LR MOVW 0(R7), R1 B (R1) // Save state of caller into g->sched. Smashes R11. TEXT gosave<>(SB),NOSPLIT,$0 MOVW LR, (g_sched+gobuf_pc)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW $0, R11 MOVW R11, (g_sched+gobuf_lr)(g) MOVW R11, (g_sched+gobuf_ret)(g) MOVW R11, (g_sched+gobuf_ctxt)(g) RET // asmcgocall(void(*fn)(void*), void *arg) // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.c for more details. TEXT runtime·asmcgocall(SB),NOSPLIT,$0-8 MOVW fn+0(FP), R1 MOVW arg+4(FP), R0 BL asmcgocall<>(SB) RET TEXT runtime·asmcgocall_errno(SB),NOSPLIT,$0-12 MOVW fn+0(FP), R1 MOVW arg+4(FP), R0 BL asmcgocall<>(SB) MOVW R0, ret+8(FP) RET TEXT asmcgocall<>(SB),NOSPLIT,$0-0 // fn in R1, arg in R0. MOVW R13, R2 MOVW g, R5 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVW g_m(g), R8 MOVW m_g0(R8), R3 CMP R3, g BEQ 4(PC) BL gosave<>(SB) MOVW R3, g MOVW (g_sched+gobuf_sp)(g), R13 // Now on a scheduling stack (a pthread-created stack). SUB $24, R13 BIC $0x7, R13 // alignment for gcc ABI MOVW R5, 20(R13) // save old g MOVW R2, 16(R13) // save old SP // R0 already contains the first argument BL (R1) // Restore registers, g, stack pointer. MOVW 20(R13), g MOVW 16(R13), R13 RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$12-12 MOVW $fn+0(FP), R0 MOVW R0, 4(R13) MOVW frame+4(FP), R0 MOVW R0, 8(R13) MOVW framesize+8(FP), R0 MOVW R0, 12(R13) MOVW $runtime·cgocallback_gofunc(SB), R0 BL (R0) RET // cgocallback_gofunc(void (*fn)(void*), void *frame, uintptr framesize) // See cgocall.c for more details. TEXT runtime·cgocallback_gofunc(SB),NOSPLIT,$8-12 // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R0 CMP $0, R0 BL.NE runtime·load_g(SB) // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP $0, g B.NE havem MOVW g, savedm-4(SP) // g is zero, so is m. MOVW $runtime·needm(SB), R0 BL (R0) havem: MOVW g_m(g), R8 MOVW R8, savedm-4(SP) // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-8(SP). MOVW m_g0(R8), R3 MOVW (g_sched+gobuf_sp)(R3), R4 MOVW R4, savedsp-8(SP) MOVW R13, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) and -4(SP) are unused. MOVW m_curg(R8), g MOVW (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVW (g_sched+gobuf_pc)(g), R5 MOVW R5, -12(R4) MOVW $-12(R4), R13 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVW 0(R13), R5 MOVW R5, (g_sched+gobuf_pc)(g) MOVW $12(R13), R4 MOVW R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVW g_m(g), R8 MOVW m_g0(R8), g MOVW (g_sched+gobuf_sp)(g), R13 MOVW savedsp-8(SP), R4 MOVW R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVW savedm-4(SP), R6 CMP $0, R6 B.NE 3(PC) MOVW $runtime·dropm(SB), R0 BL (R0) // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB),NOSPLIT,$0-4 MOVW gg+0(FP), g // Save g to thread-local storage. MOVB runtime·iscgo(SB), R0 CMP $0, R0 BL.NE runtime·save_g(SB) RET TEXT runtime·getcallerpc(SB),NOSPLIT,$-4-4 MOVW 0(SP), R0 MOVW R0, ret+4(FP) RET TEXT runtime·gogetcallerpc(SB),NOSPLIT,$-4-8 MOVW R14, ret+4(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$-4-8 MOVW pc+4(FP), R0 MOVW R0, 0(SP) RET TEXT runtime·getcallersp(SB),NOSPLIT,$-4-4 MOVW 0(FP), R0 MOVW $-4(R0), R0 MOVW R0, ret+4(FP) RET // func gogetcallersp(p unsafe.Pointer) uintptr TEXT runtime·gogetcallersp(SB),NOSPLIT,$-4-8 MOVW 0(FP), R0 MOVW $-4(R0), R0 MOVW R0, ret+4(FP) RET TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 // bool armcas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // }else // return 0; // // To implement runtime·cas in sys_$GOOS_arm.s // using the native instructions, use: // // TEXT runtime·cas(SB),NOSPLIT,$0 // B runtime·armcas(SB) // TEXT runtime·armcas(SB),NOSPLIT,$0-13 MOVW valptr+0(FP), R1 MOVW old+4(FP), R2 MOVW new+8(FP), R3 casl: LDREX (R1), R0 CMP R0, R2 BNE casfail STREX R3, (R1), R0 CMP $0, R0 BNE casl MOVW $1, R0 MOVB R0, ret+12(FP) RET casfail: MOVW $0, R0 MOVB R0, ret+12(FP) RET TEXT runtime·casuintptr(SB),NOSPLIT,$0-13 B runtime·cas(SB) TEXT runtime·atomicloaduintptr(SB),NOSPLIT,$0-8 B runtime·atomicload(SB) TEXT runtime·atomicloaduint(SB),NOSPLIT,$0-8 B runtime·atomicload(SB) TEXT runtime·stackguard(SB),NOSPLIT,$0-8 MOVW R13, R1 MOVW g_stackguard(g), R2 MOVW R1, sp+0(FP) MOVW R2, limit+4(FP) RET // AES hashing not implemented for ARM TEXT runtime·aeshash(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT,$-4-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·memeq(SB),NOSPLIT,$-4-13 MOVW a+0(FP), R1 MOVW b+4(FP), R2 MOVW size+8(FP), R3 ADD R1, R3, R6 MOVW $1, R0 MOVB R0, ret+12(FP) _next2: CMP R1, R6 RET.EQ MOVBU.P 1(R1), R4 MOVBU.P 1(R2), R5 CMP R4, R5 BEQ _next2 MOVW $0, R0 MOVB R0, ret+12(FP) RET // eqstring tests whether two strings are equal. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$-4-17 MOVW s1len+4(FP), R0 MOVW s2len+12(FP), R1 MOVW $0, R7 CMP R0, R1 MOVB.NE R7, v+16(FP) RET.NE MOVW s1str+0(FP), R2 MOVW s2str+8(FP), R3 MOVW $1, R8 MOVB R8, v+16(FP) CMP R2, R3 RET.EQ ADD R2, R0, R6 _eqnext: CMP R2, R6 RET.EQ MOVBU.P 1(R2), R4 MOVBU.P 1(R3), R5 CMP R4, R5 BEQ _eqnext MOVB R7, v+16(FP) RET // void setg_gcc(G*); set g called from gcc. TEXT setg_gcc<>(SB),NOSPLIT,$0 MOVW R0, g B runtime·save_g(SB) // TODO: share code with memeq? TEXT bytes·Equal(SB),NOSPLIT,$0 MOVW a_len+4(FP), R1 MOVW b_len+16(FP), R3 CMP R1, R3 // unequal lengths are not equal B.NE _notequal MOVW a+0(FP), R0 MOVW b+12(FP), R2 ADD R0, R1 // end _byteseq_next: CMP R0, R1 B.EQ _equal // reached the end MOVBU.P 1(R0), R4 MOVBU.P 1(R2), R5 CMP R4, R5 B.EQ _byteseq_next _notequal: MOVW $0, R0 MOVBU R0, ret+24(FP) RET _equal: MOVW $1, R0 MOVBU R0, ret+24(FP) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0 MOVW s+0(FP), R0 MOVW s_len+4(FP), R1 MOVBU c+12(FP), R2 // byte to find MOVW R0, R4 // store base for later ADD R0, R1 // end _loop: CMP R0, R1 B.EQ _notfound MOVBU.P 1(R0), R3 CMP R2, R3 B.NE _loop SUB $1, R0 // R0 will be one beyond the position we want SUB R4, R0 // remove base MOVW R0, ret+16(FP) RET _notfound: MOVW $-1, R0 MOVW R0, ret+16(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0 MOVW s+0(FP), R0 MOVW s_len+4(FP), R1 MOVBU c+8(FP), R2 // byte to find MOVW R0, R4 // store base for later ADD R0, R1 // end _sib_loop: CMP R0, R1 B.EQ _sib_notfound MOVBU.P 1(R0), R3 CMP R2, R3 B.NE _sib_loop SUB $1, R0 // R0 will be one beyond the position we want SUB R4, R0 // remove base MOVW R0, ret+12(FP) RET _sib_notfound: MOVW $-1, R0 MOVW R0, ret+12(FP) RET TEXT runtime·timenow(SB),NOSPLIT,$0-0 B time·now(SB) // A Duff's device for zeroing memory. // The compiler jumps to computed addresses within // this routine to zero chunks of memory. Do not // change this code without also changing the code // in ../../cmd/5g/ggen.c:clearfat. // R0: zero // R1: ptr to memory to be zeroed // R1 is updated as a side effect. TEXT runtime·duffzero(SB),NOSPLIT,$0-0 MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) MOVW.P R0, 4(R1) RET // A Duff's device for copying memory. // The compiler jumps to computed addresses within // this routine to copy chunks of memory. Source // and destination must not overlap. Do not // change this code without also changing the code // in ../../cmd/5g/cgen.c:sgen. // R0: scratch space // R1: ptr to source memory // R2: ptr to destination memory // R1 and R2 are updated as a side effect TEXT runtime·duffcopy(SB),NOSPLIT,$0-0 MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) MOVW.P 4(R1), R0 MOVW.P R0, 4(R2) RET TEXT runtime·fastrand1(SB),NOSPLIT,$-4-4 MOVW g_m(g), R1 MOVW m_fastrand(R1), R0 ADD.S R0, R0 EOR.MI $0x88888eef, R0 MOVW R0, m_fastrand(R1) MOVW R0, ret+0(FP) RET TEXT runtime·gocputicks(SB),NOSPLIT,$0 B runtime·cputicks(SB) TEXT runtime·return0(SB),NOSPLIT,$0 MOVW $0, R0 RET TEXT runtime·procyield(SB),NOSPLIT,$-4 MOVW cycles+0(FP), R1 MOVW $0, R0 yieldloop: CMP R0, R1 B.NE 2(PC) RET SUB $1, R1 B yieldloop