// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package eval import ( "bignum"; "eval"; "fmt"; "go/ast"; "go/scanner"; "go/token"; "log"; "os"; "strconv"; "strings"; ) // An exprContext stores information used throughout the compilation // of an entire expression. type exprContext struct { scope *Scope; constant bool; errors scanner.ErrorHandler; } // An exprCompiler compiles a single node in an expression. It stores // the whole expression's context plus information specific to this node. // After compilation, it stores the type of the expression and its // evaluator function. type exprCompiler struct { *exprContext; pos token.Position; t Type; // Evaluate this node as the given type. evalBool func(f *Frame) bool; evalUint func(f *Frame) uint64; evalInt func(f *Frame) int64; evalIdealInt func() *bignum.Integer; evalFloat func(f *Frame) float64; evalIdealFloat func() *bignum.Rational; evalString func(f *Frame) string; evalArray func(f *Frame) ArrayValue; evalPtr func(f *Frame) Value; // Evaluate to the "address of" this value; that is, the // settable Value object. nil for expressions whose address // cannot be taken. evalAddr func(f *Frame) Value; // A short string describing this expression for error // messages. Only necessary if t != nil. desc string; } func newExprCompiler(c *exprContext, pos token.Position) *exprCompiler { return &exprCompiler{ exprContext: c, pos: pos, desc: "" }; } // Operator generators // TODO(austin) Remove these forward declarations func (a *exprCompiler) genIdentOp(t Type, s *Scope, index int) func (a *exprCompiler) genIndexArray(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genStarOp(v *exprCompiler) func (a *exprCompiler) genUnaryOpNeg(v *exprCompiler) func (a *exprCompiler) genUnaryOpNot(v *exprCompiler) func (a *exprCompiler) genUnaryOpXor(v *exprCompiler) func (a *exprCompiler) genBinOpAdd(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpSub(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpMul(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpQuo(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpRem(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpAnd(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpOr(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler) func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler) func genAssign(lt Type, r *exprCompiler) (func(lv Value, f *Frame)) func (a *exprCompiler) copy() *exprCompiler { ec := newExprCompiler(a.exprContext, a.pos); ec.desc = a.desc; return ec; } func (a *exprCompiler) copyVisit(x ast.Expr) *exprCompiler { ec := newExprCompiler(a.exprContext, x.Pos()); x.Visit(ec); return ec; } func (a *exprCompiler) diag(format string, args ...) { a.errors.Error(a.pos, fmt.Sprintf(format, args)); } func (a *exprCompiler) diagOpType(op token.Token, vt Type) { a.diag("illegal operand type for '%v' operator\n\t%v", op, vt); } func (a *exprCompiler) diagOpTypes(op token.Token, lt Type, rt Type) { a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt); } /* * "As" functions. These retrieve evaluator functions from an * exprCompiler, panicking if the requested evaluator is nil. */ func (a *exprCompiler) asBool() (func(f *Frame) bool) { if a.evalBool == nil { log.Crashf("tried to get %v node as boolType", a.t); } return a.evalBool; } func (a *exprCompiler) asUint() (func(f *Frame) uint64) { if a.evalUint == nil { log.Crashf("tried to get %v node as uintType", a.t); } return a.evalUint; } func (a *exprCompiler) asInt() (func(f *Frame) int64) { if a.evalInt == nil { log.Crashf("tried to get %v node as intType", a.t); } return a.evalInt; } func (a *exprCompiler) asIdealInt() (func() *bignum.Integer) { if a.evalIdealInt == nil { log.Crashf("tried to get %v node as idealIntType", a.t); } return a.evalIdealInt; } func (a *exprCompiler) asFloat() (func(f *Frame) float64) { if a.evalFloat == nil { log.Crashf("tried to get %v node as floatType", a.t); } return a.evalFloat; } func (a *exprCompiler) asIdealFloat() (func() *bignum.Rational) { if a.evalIdealFloat == nil { log.Crashf("tried to get %v node as idealFloatType", a.t); } return a.evalIdealFloat; } func (a *exprCompiler) asString() (func(f *Frame) string) { if a.evalString == nil { log.Crashf("tried to get %v node as stringType", a.t); } return a.evalString; } func (a *exprCompiler) asArray() (func(f *Frame) ArrayValue) { if a.evalArray == nil { log.Crashf("tried to get %v node as ArrayType", a.t); } return a.evalArray; } func (a *exprCompiler) asPtr() (func(f *Frame) Value) { if a.evalPtr == nil { log.Crashf("tried to get %v node as PtrType", a.t); } return a.evalPtr; } /* * Common expression manipulations */ // a.convertTo(t) converts the value of the analyzed expression a, // which must be a constant, ideal number, to a new analyzed // expression with a constant value of type t. func (a *exprCompiler) convertTo(t Type) *exprCompiler { if !a.t.isIdeal() { log.Crashf("attempted to convert from %v, expected ideal", a.t); } var rat *bignum.Rational; // XXX(Spec) The spec says "It is erroneous". // // It is an error to assign a value with a non-zero fractional // part to an integer, or if the assignment would overflow or // underflow, or in general if the value cannot be represented // by the type of the variable. switch a.t { case IdealFloatType: rat = a.asIdealFloat()(); if t.isInteger() && !rat.IsInt() { a.diag("constant %v truncated to integer", ratToString(rat)); return nil; } case IdealIntType: i := a.asIdealInt()(); rat = bignum.MakeRat(i, bignum.Nat(1)); default: log.Crashf("unexpected ideal type %v", a.t); } // Check bounds if t, ok := t.(BoundedType); ok { if rat.Cmp(t.minVal()) < 0 { a.diag("constant %v underflows %v", ratToString(rat), t); return nil; } if rat.Cmp(t.maxVal()) > 0 { a.diag("constant %v overflows %v", ratToString(rat), t); return nil; } } // Convert rat to type t. res := a.copy(); res.t = t; switch t := t.(type) { case *uintType: n, d := rat.Value(); f := n.Quo(bignum.MakeInt(false, d)); v := f.Abs().Value(); res.evalUint = func(*Frame) uint64 { return v }; case *intType: n, d := rat.Value(); f := n.Quo(bignum.MakeInt(false, d)); v := f.Value(); res.evalInt = func(*Frame) int64 { return v }; case *idealIntType: n, d := rat.Value(); f := n.Quo(bignum.MakeInt(false, d)); res.evalIdealInt = func() *bignum.Integer { return f }; case *floatType: n, d := rat.Value(); v := float64(n.Value())/float64(d.Value()); res.evalFloat = func(*Frame) float64 { return v }; case *idealFloatType: res.evalIdealFloat = func() *bignum.Rational { return rat }; default: log.Crashf("cannot convert to type %T", t); } return res; } // mkAssign takes an optional expected l-value type, lt, and an // r-value expression compiler, r, and returns the expected l-value // type and a function that evaluates the r-value and assigns it to // the l-value lv. // // If lt is non-nil, the returned l-value type will always be lt. If // lt is nil, mkAssign will infer and return the appropriate l-value // type, or produce an error. // // errOp specifies the operation name to use for error messages, such // as "assignment", or "function call". errPos, if non-zero, // specifies the position of this assignment (for tuple assignments or // function arguments). errPosName specifies the name to use for // positions. // // If the assignment fails to typecheck, this generates an error // message and returns nil, nil. func mkAssign(lt Type, r *exprCompiler, errOp string, errPos int, errPosName string) (Type, func(lv Value, f *Frame)) { // However, when [an ideal is] (used in an expression) // assigned to a variable or typed constant, the destination // must be able to represent the assigned value. if r.t.isIdeal() && (lt == nil || lt.isInteger() || lt.isFloat()) { // If the type is absent and the corresponding // expression is a constant expression of ideal // integer or ideal float type, the type of the // declared variable is int or float respectively. if lt == nil { switch { case r.t.isInteger(): lt = IntType; case r.t.isFloat(): lt = FloatType; default: log.Crashf("unexpected ideal type %v", r.t); } } r = r.convertTo(lt); if r == nil { return nil, nil; } } // TOOD(austin) Deal with assignment special cases if lt == nil { lt = r.t; } else { // Values of any type may always be assigned to // variables of compatible static type. if !lt.compatible(r.t) { if errPos == 0 { r.diag("illegal operand types for %s\n\t%v\n\t%v", errOp, lt, r.t); } else { r.diag("illegal operand types in %s %d of %s\n\t%v\n\t%v", errPosName, errPos, errOp, lt, r.t); } return nil, nil; } } // Compile return lt, genAssign(lt, r); } /* * Expression visitors */ func (a *exprCompiler) DoBadExpr(x *ast.BadExpr) { // Do nothing. Already reported by parser. } func (a *exprCompiler) DoIdent(x *ast.Ident) { def, dscope := a.scope.Lookup(x.Value); if def == nil { a.diag("%s: undefined", x.Value); return; } switch def := def.(type) { case *Constant: a.t = def.Type; switch _ := a.t.literal().(type) { case *idealIntType: val := def.Value.(IdealIntValue).Get(); a.evalIdealInt = func() *bignum.Integer { return val; }; case *idealFloatType: val := def.Value.(IdealFloatValue).Get(); a.evalIdealFloat = func() *bignum.Rational { return val; }; default: log.Crashf("unexpected constant type: %v", a.t); } a.desc = "constant"; case *Variable: if a.constant { a.diag("expression must be a constant"); return; } a.t = def.Type; defidx := def.Index; a.genIdentOp(def.Type, dscope, defidx); a.evalAddr = func(f *Frame) Value { return f.Get(dscope, defidx); }; a.desc = "variable"; case Type: a.diag("type %v used as expression", x.Value); default: log.Crashf("name %s has unknown type %T", x.Value, def); } } func (a *exprCompiler) doIdealInt(i *bignum.Integer) { a.t = IdealIntType; a.evalIdealInt = func() *bignum.Integer { return i }; } func (a *exprCompiler) DoIntLit(x *ast.IntLit) { i, _, _2 := bignum.IntFromString(string(x.Value), 0); a.doIdealInt(i); a.desc = "integer literal"; } func (a *exprCompiler) DoCharLit(x *ast.CharLit) { if x.Value[0] != '\'' { log.Crashf("malformed character literal %s at %v passed parser", x.Value, x.Pos()); } v, mb, tail, err := strconv.UnquoteChar(string(x.Value[1:len(x.Value)]), '\''); if err != nil || tail != "'" { log.Crashf("malformed character literal %s at %v passed parser", x.Value, x.Pos()); } a.doIdealInt(bignum.Int(int64(v))); a.desc = "character literal"; } func (a *exprCompiler) DoFloatLit(x *ast.FloatLit) { f, _, n := bignum.RatFromString(string(x.Value), 0); if n != len(x.Value) { log.Crashf("malformed float literal %s at %v passed parser", x.Value, x.Pos()); } a.t = IdealFloatType; a.evalIdealFloat = func() *bignum.Rational { return f }; a.desc = "float literal"; } func (a *exprCompiler) doString(s string) { a.t = StringType; a.evalString = func(*Frame) string { return s }; } func (a *exprCompiler) DoStringLit(x *ast.StringLit) { s, err := strconv.Unquote(string(x.Value)); if err != nil { a.diag("illegal string literal, %v", err); return; } a.doString(s); a.desc = "string literal"; } func (a *exprCompiler) DoStringList(x *ast.StringList) { ss := make([]string, len(x.Strings)); for i := 0; i < len(x.Strings); i++ { s, err := strconv.Unquote(string(x.Strings[i].Value)); if err != nil { a.diag("illegal string literal, %v", err); return; } ss[i] = s; } a.doString(strings.Join(ss, "")); a.desc = "string literal"; } func (a *exprCompiler) DoFuncLit(x *ast.FuncLit) { log.Crash("Not implemented"); } func (a *exprCompiler) DoCompositeLit(x *ast.CompositeLit) { log.Crash("Not implemented"); } func (a *exprCompiler) DoParenExpr(x *ast.ParenExpr) { x.X.Visit(a); } func (a *exprCompiler) DoSelectorExpr(x *ast.SelectorExpr) { log.Crash("Not implemented"); } func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) { l, r := a.copyVisit(x.X), a.copyVisit(x.Index); if l.t == nil || r.t == nil { return; } // Type check object if lt, ok := l.t.literal().(*PtrType); ok { if et, ok := lt.Elem.literal().(*ArrayType); ok { // Automatic dereference nl := l.copy(); nl.t = et; nl.genStarOp(l); l = nl; } } var at Type; intIndex := false; var maxIndex int64 = -1; switch lt := l.t.literal().(type) { case *ArrayType: at = lt.Elem; intIndex = true; maxIndex = lt.Len; // TODO(austin) Uncomment when there is a SliceType // case *SliceType: // a.t = lt.Elem; // intIndex = true; case *stringType: at = Uint8Type; intIndex = true; // TODO(austin) Uncomment when there is a MapType // case *MapType: // log.Crash("Index into map not implemented"); default: a.diag("cannot index into %v", l.t); return; } // Type check index and convert to int if necessary if intIndex { // XXX(Spec) It's unclear if ideal floats with no // fractional part are allowed here. 6g allows it. I // believe that's wrong. switch _ := r.t.literal().(type) { case *idealIntType: val := r.asIdealInt()(); if val.IsNeg() || (maxIndex != -1 && val.Cmp(bignum.Int(maxIndex)) >= 0) { a.diag("array index out of bounds"); return; } r = r.convertTo(IntType); if r == nil { return; } case *uintType: // Convert to int nr := r.copy(); nr.t = IntType; rf := r.asUint(); nr.evalInt = func(f *Frame) int64 { return int64(rf(f)); }; r = nr; case *intType: // Good as is default: a.diag("illegal operand type for index\n\t%v", r.t); return; } } a.t = at; // Compile switch lt := l.t.literal().(type) { case *ArrayType: a.t = lt.Elem; // TODO(austin) Bounds check a.genIndexArray(l, r); lf := l.asArray(); rf := r.asInt(); a.evalAddr = func(f *Frame) Value { return lf(f).Elem(rf(f)); }; default: log.Crashf("Compilation of index into %T not implemented", l.t.literal()); } } func (a *exprCompiler) DoTypeAssertExpr(x *ast.TypeAssertExpr) { log.Crash("Not implemented"); } func (a *exprCompiler) DoCallExpr(x *ast.CallExpr) { log.Crash("Not implemented"); } func (a *exprCompiler) DoStarExpr(x *ast.StarExpr) { v := a.copyVisit(x.X); if v.t == nil { return; } switch vt := v.t.literal().(type) { case *PtrType: // TODO(austin) If this is vt.Elem() I get a // "call of a non-function: Type" error a.t = vt.Elem; a.genStarOp(v); vf := v.asPtr(); a.evalAddr = func(f *Frame) Value { return vf(f) }; a.desc = "* expression"; default: a.diagOpType(token.MUL, v.t); } } var unaryOpDescs = make(map[token.Token] string) func (a *exprCompiler) DoUnaryExpr(x *ast.UnaryExpr) { v := a.copyVisit(x.X); if v.t == nil { return; } // Type check switch x.Op { case token.ADD, token.SUB: if !v.t.isInteger() && !v.t.isFloat() { a.diagOpType(x.Op, v.t); return; } a.t = v.t; case token.NOT: if !v.t.isBoolean() { a.diagOpType(x.Op, v.t); return; } // TODO(austin) Unnamed bool? Named bool? a.t = BoolType; case token.XOR: if !v.t.isInteger() { a.diagOpType(x.Op, v.t); return; } a.t = v.t; case token.AND: // The unary prefix address-of operator & generates // the address of its operand, which must be a // variable, pointer indirection, field selector, or // array or slice indexing operation. if v.evalAddr == nil { a.diag("cannot take the address of %s", v.desc); return; } // TODO(austin) Implement "It is illegal to take the // address of a function result variable" once I have // function result variables. a.t = NewPtrType(v.t); case token.ARROW: log.Crashf("Unary op %v not implemented", x.Op); default: log.Crashf("unknown unary operator %v", x.Op); } var ok bool; a.desc, ok = unaryOpDescs[x.Op]; if !ok { a.desc = "unary " + x.Op.String() + " expression"; unaryOpDescs[x.Op] = a.desc; } // Compile switch x.Op { case token.ADD: // Just compile it out *a = *v; case token.SUB: a.genUnaryOpNeg(v); case token.NOT: a.genUnaryOpNot(v); case token.XOR: a.genUnaryOpXor(v); case token.AND: vf := v.evalAddr; a.evalPtr = func(f *Frame) Value { return vf(f) }; default: log.Crashf("Compilation of unary op %v not implemented", x.Op); } } var binOpDescs = make(map[token.Token] string) func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) { // Save the original types of l.t and r.t for error messages. origlt := l.t; origrt := r.t; // XXX(Spec) What is the exact definition of a "named type"? // XXX(Spec) Arithmetic operators: "Integer types" apparently // means all types compatible with basic integer types, though // this is never explained. Likewise for float types, etc. // This relates to the missing explanation of named types. // XXX(Spec) Operators: "If both operands are ideal numbers, // the conversion is to ideal floats if one of the operands is // an ideal float (relevant for / and %)." How is that // relevant only for / and %? If I add an ideal int and an // ideal float, I get an ideal float. if op != token.SHL && op != token.SHR { // Except in shift expressions, if one operand has // numeric type and the other operand is an ideal // number, the ideal number is converted to match the // type of the other operand. if (l.t.isInteger() || l.t.isFloat()) && !l.t.isIdeal() && r.t.isIdeal() { r = r.convertTo(l.t); } else if (r.t.isInteger() || r.t.isFloat()) && !r.t.isIdeal() && l.t.isIdeal() { l = l.convertTo(r.t); } if l == nil || r == nil { return; } // Except in shift expressions, if both operands are // ideal numbers and one is an ideal float, the other // is converted to ideal float. if l.t.isIdeal() && r.t.isIdeal() { if l.t.isInteger() && r.t.isFloat() { l = l.convertTo(r.t); } else if l.t.isFloat() && r.t.isInteger() { r = r.convertTo(l.t); } if l == nil || r == nil { return; } } } // Useful type predicates // TODO(austin) The spec is wrong here. The types must be // identical, not compatible. compat := func() bool { return l.t.compatible(r.t); }; integers := func() bool { return l.t.isInteger() && r.t.isInteger(); }; floats := func() bool { return l.t.isFloat() && r.t.isFloat(); }; strings := func() bool { // TODO(austin) Deal with named types return l.t == StringType && r.t == StringType; }; booleans := func() bool { // TODO(austin) Deal with named types return l.t == BoolType && r.t == BoolType; }; // Type check switch op { case token.ADD: if !compat() || (!integers() && !floats() && !strings()) { a.diagOpTypes(op, origlt, origrt); return; } a.t = l.t; case token.SUB, token.MUL, token.QUO: if !compat() || (!integers() && !floats()) { a.diagOpTypes(op, origlt, origrt); return; } a.t = l.t; case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: if !compat() || !integers() { a.diagOpTypes(op, origlt, origrt); return; } a.t = l.t; case token.SHL, token.SHR: // XXX(Spec) Is it okay for the right operand to be an // ideal float with no fractional part? "The right // operand in a shift operation must be always be of // unsigned integer type or an ideal number that can // be safely converted into an unsigned integer type // (§Arithmetic operators)" suggests so and 6g agrees. if !l.t.isInteger() || !(r.t.isInteger() || r.t.isIdeal()) { a.diagOpTypes(op, origlt, origrt); return; } // The right operand in a shift operation must be // always be of unsigned integer type or an ideal // number that can be safely converted into an // unsigned integer type. if r.t.isIdeal() { r2 := r.convertTo(UintType); if r2 == nil { return; } // If the left operand is not ideal, convert // the right to not ideal. if !l.t.isIdeal() { r = r2; } // If both are ideal, but the right side isn't // an ideal int, convert it to simplify things. if l.t.isIdeal() && !r.t.isInteger() { r = r.convertTo(IdealIntType); if r == nil { log.Crashf("conversion to uintType succeeded, but conversion to idealIntType failed"); } } } else if _, ok := r.t.literal().(*uintType); !ok { a.diag("right operand of shift must be unsigned"); return; } if l.t.isIdeal() && !r.t.isIdeal() { // XXX(Spec) What is the meaning of "ideal >> // non-ideal"? Russ says the ideal should be // converted to an int. 6g propagates the // type down from assignments as a hint. l = l.convertTo(IntType); if l == nil { return; } } // At this point, we should have one of three cases: // 1) uint SHIFT uint // 2) int SHIFT uint // 3) ideal int SHIFT ideal int a.t = l.t; case token.LOR, token.LAND: if !booleans() { return; } // XXX(Spec) There's no mention of *which* boolean // type the logical operators return. From poking at // 6g, it appears to be the named boolean type, NOT // the type of the left operand, and NOT an unnamed // boolean type. // TODO(austin) Named bool type a.t = BoolType; case token.ARROW: // The operands in channel sends differ in type: one // is always a channel and the other is a variable or // value of the channel's element type. log.Crash("Binary op <- not implemented"); a.t = BoolType; case token.LSS, token.GTR, token.LEQ, token.GEQ: // ... booleans may be compared only for equality or // inequality. if l.t.literal() == BoolType || r.t.literal() == BoolType { a.diagOpTypes(op, origlt, origrt); return; } fallthrough; case token.EQL, token.NEQ: // When comparing two operands of channel type, the // channel value types must be compatible but the // channel direction is ignored. // XXX(Spec) Operators: "When comparing two operands // of channel type, the channel value types must be // compatible but the channel direction is ignored." // By "compatible" this really means "comparison // compatible". Really, the rules for type checking // comparison operators are entirely different from // other binary operators, but this just barely hints // at that. // XXX(Spec) Comparison operators: "All comparison // operators apply to basic types except bools." // "except bools" is really weird here, since this is // actually explained in the Comparison compatibility // section. log.Crashf("Binary op %v not implemented", op); // TODO(austin) Unnamed bool? Named bool? a.t = BoolType; default: log.Crashf("unknown binary operator %v", op); } var ok bool; a.desc, ok = binOpDescs[op]; if !ok { a.desc = op.String() + " expression"; binOpDescs[op] = a.desc; } // Compile switch op { case token.ADD: a.genBinOpAdd(l, r); case token.SUB: a.genBinOpSub(l, r); case token.MUL: a.genBinOpMul(l, r); case token.QUO: // TODO(austin) What if divisor is zero? // TODO(austin) Clear higher bits that may have // accumulated in our temporary. a.genBinOpQuo(l, r); case token.REM: // TODO(austin) What if divisor is zero? // TODO(austin) Clear higher bits that may have // accumulated in our temporary. a.genBinOpRem(l, r); case token.AND: a.genBinOpAnd(l, r); case token.OR: a.genBinOpOr(l, r); case token.XOR: a.genBinOpXor(l, r); case token.AND_NOT: a.genBinOpAndNot(l, r); case token.SHL: if l.t.isIdeal() { lv := l.asIdealInt()(); rv := r.asIdealInt()(); const maxShift = 99999; if rv.Cmp(bignum.Int(maxShift)) > 0 { a.diag("left shift by %v; exceeds implementation limit of %v", rv, maxShift); a.t = nil; return; } val := lv.Shl(uint(rv.Value())); a.evalIdealInt = func() *bignum.Integer { return val }; } else { a.genBinOpShl(l, r); } case token.SHR: if l.t.isIdeal() { lv := l.asIdealInt()(); rv := r.asIdealInt()(); val := lv.Shr(uint(rv.Value())); a.evalIdealInt = func() *bignum.Integer { return val }; } else { a.genBinOpShr(l, r); } default: log.Crashf("Compilation of binary op %v not implemented", op); } } func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) { l, r := a.copyVisit(x.X), a.copyVisit(x.Y); if l.t == nil || r.t == nil { return; } a.doBinaryExpr(x.Op, l, r); } func (a *exprCompiler) DoKeyValueExpr(x *ast.KeyValueExpr) { log.Crash("Not implemented"); } func (a *exprCompiler) DoEllipsis(x *ast.Ellipsis) { log.Crash("Not implemented"); } func (a *exprCompiler) DoArrayType(x *ast.ArrayType) { log.Crash("Not implemented"); } func (a *exprCompiler) DoStructType(x *ast.StructType) { log.Crash("Not implemented"); } func (a *exprCompiler) DoFuncType(x *ast.FuncType) { log.Crash("Not implemented"); } func (a *exprCompiler) DoInterfaceType(x *ast.InterfaceType) { log.Crash("Not implemented"); } func (a *exprCompiler) DoMapType(x *ast.MapType) { log.Crash("Not implemented"); } func (a *exprCompiler) DoChanType(x *ast.ChanType) { log.Crash("Not implemented"); } func compileExpr(expr ast.Expr, scope *Scope, errors scanner.ErrorHandler) *exprCompiler { ec := newExprCompiler(&exprContext{scope, false, errors}, expr.Pos()); expr.Visit(ec); if ec.t == nil { return nil; } return ec; } /* * Public interface */ type Expr struct { t Type; f func(f *Frame, out Value); } func (expr *Expr) Eval(f *Frame) Value { v := expr.t.Zero(); expr.f(f, v); return v; } func CompileExpr(expr ast.Expr, scope *Scope) (*Expr, os.Error) { errors := scanner.NewErrorVector(); ec := compileExpr(expr, scope, errors); if ec == nil { return nil, errors.GetError(scanner.Sorted); } switch t := ec.t.(type) { case *boolType: return &Expr{t, func(f *Frame, out Value) { out.(BoolValue).Set(ec.evalBool(f)) }}, nil; case *uintType: return &Expr{t, func(f *Frame, out Value) { out.(UintValue).Set(ec.evalUint(f)) }}, nil; case *intType: return &Expr{t, func(f *Frame, out Value) { out.(IntValue).Set(ec.evalInt(f)) }}, nil; case *idealIntType: return &Expr{t, func(f *Frame, out Value) { out.(*idealIntV).V = ec.evalIdealInt() }}, nil; case *floatType: return &Expr{t, func(f *Frame, out Value) { out.(FloatValue).Set(ec.evalFloat(f)) }}, nil; case *idealFloatType: return &Expr{t, func(f *Frame, out Value) { out.(*idealFloatV).V = ec.evalIdealFloat() }}, nil; case *stringType: return &Expr{t, func(f *Frame, out Value) { out.(StringValue).Set(ec.evalString(f)) }}, nil; case *PtrType: return &Expr{t, func(f *Frame, out Value) { out.(PtrValue).Set(ec.evalPtr(f)) }}, nil; } log.Crashf("unexpected type %v", ec.t); panic(); } /* * Operator generators * Everything below here is MACHINE GENERATED by gen.py genOps */ func (a *exprCompiler) genIdentOp(t Type, s *Scope, index int) { switch _ := t.literal().(type) { case *boolType: a.evalBool = func(f *Frame) bool { return f.Get(s, index).(BoolValue).Get() }; case *uintType: a.evalUint = func(f *Frame) uint64 { return f.Get(s, index).(UintValue).Get() }; case *intType: a.evalInt = func(f *Frame) int64 { return f.Get(s, index).(IntValue).Get() }; case *floatType: a.evalFloat = func(f *Frame) float64 { return f.Get(s, index).(FloatValue).Get() }; case *stringType: a.evalString = func(f *Frame) string { return f.Get(s, index).(StringValue).Get() }; case *ArrayType: a.evalArray = func(f *Frame) ArrayValue { return f.Get(s, index).(ArrayValue).Get() }; case *PtrType: a.evalPtr = func(f *Frame) Value { return f.Get(s, index).(PtrValue).Get() }; default: log.Crashf("unexpected identifier type %v at %v", t.literal(), a.pos); } } func (a *exprCompiler) genIndexArray(l *exprCompiler, r *exprCompiler) { lf := l.asArray(); rf := r.asInt(); switch _ := a.t.literal().(type) { case *boolType: a.evalBool = func(f *Frame) bool { return lf(f).Elem(rf(f)).(BoolValue).Get() }; case *uintType: a.evalUint = func(f *Frame) uint64 { return lf(f).Elem(rf(f)).(UintValue).Get() }; case *intType: a.evalInt = func(f *Frame) int64 { return lf(f).Elem(rf(f)).(IntValue).Get() }; case *floatType: a.evalFloat = func(f *Frame) float64 { return lf(f).Elem(rf(f)).(FloatValue).Get() }; case *stringType: a.evalString = func(f *Frame) string { return lf(f).Elem(rf(f)).(StringValue).Get() }; case *ArrayType: a.evalArray = func(f *Frame) ArrayValue { return lf(f).Elem(rf(f)).(ArrayValue).Get() }; case *PtrType: a.evalPtr = func(f *Frame) Value { return lf(f).Elem(rf(f)).(PtrValue).Get() }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genStarOp(v *exprCompiler) { vf := v.asPtr(); switch _ := a.t.literal().(type) { case *boolType: a.evalBool = func(f *Frame) bool { return vf(f).(BoolValue).Get() }; case *uintType: a.evalUint = func(f *Frame) uint64 { return vf(f).(UintValue).Get() }; case *intType: a.evalInt = func(f *Frame) int64 { return vf(f).(IntValue).Get() }; case *floatType: a.evalFloat = func(f *Frame) float64 { return vf(f).(FloatValue).Get() }; case *stringType: a.evalString = func(f *Frame) string { return vf(f).(StringValue).Get() }; case *ArrayType: a.evalArray = func(f *Frame) ArrayValue { return vf(f).(ArrayValue).Get() }; case *PtrType: a.evalPtr = func(f *Frame) Value { return vf(f).(PtrValue).Get() }; default: log.Crashf("unexpected result type %v at %v", v.t.literal().(*PtrType).Elem.literal(), a.pos); } } func (a *exprCompiler) genUnaryOpNeg(v *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: vf := v.asUint(); a.evalUint = func(f *Frame) uint64 { return -vf(f) }; case *intType: vf := v.asInt(); a.evalInt = func(f *Frame) int64 { return -vf(f) }; case *idealIntType: vf := v.asIdealInt(); val := vf().Neg(); a.evalIdealInt = func() *bignum.Integer { return val }; case *floatType: vf := v.asFloat(); a.evalFloat = func(f *Frame) float64 { return -vf(f) }; case *idealFloatType: vf := v.asIdealFloat(); val := vf().Neg(); a.evalIdealFloat = func() *bignum.Rational { return val }; default: log.Crashf("unexpected result type %v at %v", v.t.literal(), a.pos); } } func (a *exprCompiler) genUnaryOpNot(v *exprCompiler) { switch _ := a.t.literal().(type) { case *boolType: vf := v.asBool(); a.evalBool = func(f *Frame) bool { return !vf(f) }; default: log.Crashf("unexpected result type %v at %v", v.t.literal(), a.pos); } } func (a *exprCompiler) genUnaryOpXor(v *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: vf := v.asUint(); a.evalUint = func(f *Frame) uint64 { return ^vf(f) }; case *intType: vf := v.asInt(); a.evalInt = func(f *Frame) int64 { return ^vf(f) }; case *idealIntType: vf := v.asIdealInt(); val := vf().Neg().Sub(bignum.Int(1)); a.evalIdealInt = func() *bignum.Integer { return val }; default: log.Crashf("unexpected result type %v at %v", v.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpAdd(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) + rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) + rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Add(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; case *floatType: lf := l.asFloat(); rf := r.asFloat(); a.evalFloat = func(f *Frame) float64 { return lf(f) + rf(f) }; case *idealFloatType: lf := l.asIdealFloat(); rf := r.asIdealFloat(); val := lf().Add(rf()); a.evalIdealFloat = func() *bignum.Rational { return val }; case *stringType: lf := l.asString(); rf := r.asString(); a.evalString = func(f *Frame) string { return lf(f) + rf(f) }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpSub(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) - rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) - rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Sub(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; case *floatType: lf := l.asFloat(); rf := r.asFloat(); a.evalFloat = func(f *Frame) float64 { return lf(f) - rf(f) }; case *idealFloatType: lf := l.asIdealFloat(); rf := r.asIdealFloat(); val := lf().Sub(rf()); a.evalIdealFloat = func() *bignum.Rational { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpMul(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) * rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) * rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Mul(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; case *floatType: lf := l.asFloat(); rf := r.asFloat(); a.evalFloat = func(f *Frame) float64 { return lf(f) * rf(f) }; case *idealFloatType: lf := l.asIdealFloat(); rf := r.asIdealFloat(); val := lf().Mul(rf()); a.evalIdealFloat = func() *bignum.Rational { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpQuo(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) / rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) / rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Quo(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; case *floatType: lf := l.asFloat(); rf := r.asFloat(); a.evalFloat = func(f *Frame) float64 { return lf(f) / rf(f) }; case *idealFloatType: lf := l.asIdealFloat(); rf := r.asIdealFloat(); val := lf().Quo(rf()); a.evalIdealFloat = func() *bignum.Rational { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpRem(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) % rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) % rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Rem(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpAnd(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) & rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) & rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().And(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpOr(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) | rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) | rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Or(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) ^ rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) ^ rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().Xor(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) &^ rf(f) }; case *intType: lf := l.asInt(); rf := r.asInt(); a.evalInt = func(f *Frame) int64 { return lf(f) &^ rf(f) }; case *idealIntType: lf := l.asIdealInt(); rf := r.asIdealInt(); val := lf().AndNot(rf()); a.evalIdealInt = func() *bignum.Integer { return val }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) << rf(f) }; case *intType: lf := l.asInt(); rf := r.asUint(); a.evalInt = func(f *Frame) int64 { return lf(f) << rf(f) }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler) { switch _ := a.t.literal().(type) { case *uintType: lf := l.asUint(); rf := r.asUint(); a.evalUint = func(f *Frame) uint64 { return lf(f) >> rf(f) }; case *intType: lf := l.asInt(); rf := r.asUint(); a.evalInt = func(f *Frame) int64 { return lf(f) >> rf(f) }; default: log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos); } } func genAssign(lt Type, r *exprCompiler) (func(lv Value, f *Frame)) { switch _ := lt.literal().(type) { case *boolType: rf := r.asBool(); return func(lv Value, f *Frame) { lv.(BoolValue).Set(rf(f)) }; case *uintType: rf := r.asUint(); return func(lv Value, f *Frame) { lv.(UintValue).Set(rf(f)) }; case *intType: rf := r.asInt(); return func(lv Value, f *Frame) { lv.(IntValue).Set(rf(f)) }; case *floatType: rf := r.asFloat(); return func(lv Value, f *Frame) { lv.(FloatValue).Set(rf(f)) }; case *stringType: rf := r.asString(); return func(lv Value, f *Frame) { lv.(StringValue).Set(rf(f)) }; case *ArrayType: rf := r.asArray(); return func(lv Value, f *Frame) { lv.Assign(rf(f)) }; case *PtrType: rf := r.asPtr(); return func(lv Value, f *Frame) { lv.(PtrValue).Set(rf(f)) }; default: log.Crashf("unexpected left operand type %v at %v", lt.literal(), r.pos); } panic(); }