// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector. #include "runtime.h" #include "arch_GOARCH.h" #include "malloc.h" #include "stack.h" enum { Debug = 0, PtrSize = sizeof(void*), DebugMark = 0, // run second pass to check mark // Four bits per word (see #defines below). wordsPerBitmapWord = sizeof(void*)*8/4, bitShift = sizeof(void*)*8/4, }; // Bits in per-word bitmap. // #defines because enum might not be able to hold the values. // // Each word in the bitmap describes wordsPerBitmapWord words // of heap memory. There are 4 bitmap bits dedicated to each heap word, // so on a 64-bit system there is one bitmap word per 16 heap words. // The bits in the word are packed together by type first, then by // heap location, so each 64-bit bitmap word consists of, from top to bottom, // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. // This layout makes it easier to iterate over the bits of a given type. // // The bitmap starts at mheap.arena_start and extends *backward* from // there. On a 64-bit system the off'th word in the arena is tracked by // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, // the only difference is that the divisor is 8.) // // To pull out the bits corresponding to a given pointer p, we use: // // off = p - (uintptr*)mheap.arena_start; // word offset // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; // shift = off % wordsPerBitmapWord // bits = *b >> shift; // /* then test bits & bitAllocated, bits & bitMarked, etc. */ // #define bitAllocated ((uintptr)1<<(bitShift*0)) #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) // Holding worldsema grants an M the right to try to stop the world. // The procedure is: // // runtime·semacquire(&runtime·worldsema); // m->gcing = 1; // runtime·stoptheworld(); // // ... do stuff ... // // m->gcing = 0; // runtime·semrelease(&runtime·worldsema); // runtime·starttheworld(); // uint32 runtime·worldsema = 1; static int32 gctrace; typedef struct Workbuf Workbuf; struct Workbuf { Workbuf *next; uintptr nobj; byte *obj[512-2]; }; typedef struct Finalizer Finalizer; struct Finalizer { void (*fn)(void*); void *arg; int32 nret; }; typedef struct FinBlock FinBlock; struct FinBlock { FinBlock *alllink; FinBlock *next; int32 cnt; int32 cap; Finalizer fin[1]; }; extern byte data[]; extern byte etext[]; extern byte ebss[]; static G *fing; static FinBlock *finq; // list of finalizers that are to be executed static FinBlock *finc; // cache of free blocks static FinBlock *allfin; // list of all blocks static Lock finlock; static int32 fingwait; static void runfinq(void); static Workbuf* getempty(Workbuf*); static Workbuf* getfull(Workbuf*); static void putempty(Workbuf*); static Workbuf* handoff(Workbuf*); static struct { Lock fmu; Workbuf *full; Lock emu; Workbuf *empty; uint32 nproc; volatile uint32 nwait; volatile uint32 ndone; Note alldone; Lock markgate; Lock sweepgate; MSpan *spans; Lock; byte *chunk; uintptr nchunk; } work; // scanblock scans a block of n bytes starting at pointer b for references // to other objects, scanning any it finds recursively until there are no // unscanned objects left. Instead of using an explicit recursion, it keeps // a work list in the Workbuf* structures and loops in the main function // body. Keeping an explicit work list is easier on the stack allocator and // more efficient. static void scanblock(byte *b, int64 n) { byte *obj, *arena_start, *arena_used, *p; void **vp; uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc; MSpan *s; PageID k; void **wp; Workbuf *wbuf; bool keepworking; if((int64)(uintptr)n != n || n < 0) { runtime·printf("scanblock %p %D\n", b, n); runtime·throw("scanblock"); } // Memory arena parameters. arena_start = runtime·mheap.arena_start; arena_used = runtime·mheap.arena_used; nproc = work.nproc; wbuf = nil; // current work buffer wp = nil; // storage for next queued pointer (write pointer) nobj = 0; // number of queued objects // Scanblock helpers pass b==nil. // The main proc needs to return to make more // calls to scanblock. But if work.nproc==1 then // might as well process blocks as soon as we // have them. keepworking = b == nil || work.nproc == 1; // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } for(;;) { // Each iteration scans the block b of length n, queueing pointers in // the work buffer. if(Debug > 1) runtime·printf("scanblock %p %D\n", b, n); vp = (void**)b; n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */ for(i=0; i= arena_used) continue; // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { obj = (byte*)obj - (shift-j)*PtrSize; shift = j; bits = xbits>>shift; goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime·mheap.map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; size = runtime·class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) continue; if(nproc == 1) *bitp |= bitMarked< 4 && work.nwait > 0 && work.full == nil) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } // If buffer is full, get a new one. if(wbuf == nil || nobj >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; } *wp++ = obj; nobj++; continue_obj:; } // Done scanning [b, b+n). Prepare for the next iteration of // the loop by setting b and n to the parameters for the next block. // Fetch b from the work buffer. if(nobj == 0) { if(!keepworking) { putempty(wbuf); return; } // Emptied our buffer: refill. wbuf = getfull(wbuf); if(wbuf == nil) return; nobj = wbuf->nobj; wp = wbuf->obj + wbuf->nobj; } b = *--wp; nobj--; // Ask span about size class. // (Manually inlined copy of MHeap_Lookup.) x = (uintptr)b>>PageShift; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime·mheap.map[x]; if(s->sizeclass == 0) n = s->npages<sizeclass]; } } // debug_scanblock is the debug copy of scanblock. // it is simpler, slower, single-threaded, recursive, // and uses bitSpecial as the mark bit. static void debug_scanblock(byte *b, int64 n) { byte *obj, *p; void **vp; uintptr size, *bitp, bits, shift, i, xbits, off; MSpan *s; if(!DebugMark) runtime·throw("debug_scanblock without DebugMark"); if((int64)(uintptr)n != n || n < 0) { runtime·printf("debug_scanblock %p %D\n", b, n); runtime·throw("debug_scanblock"); } // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } vp = (void**)b; n /= PtrSize; for(i=0; i= runtime·mheap.arena_used) continue; // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Consult span table to find beginning. s = runtime·MHeap_LookupMaybe(&runtime·mheap, obj); if(s == nil) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; size = (uintptr)s->npages<= (byte*)s->limit) continue; size = runtime·class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // If not allocated or already marked, done. if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked continue; *bitp |= bitSpecial<next = work.full; work.full = b; } // Grab from empty list if possible. b = work.empty; if(b != nil) { work.empty = b->next; goto haveb; } } else { // Put b on full list. if(b != nil) { runtime·lock(&work.fmu); b->next = work.full; work.full = b; runtime·unlock(&work.fmu); } // Grab from empty list if possible. runtime·lock(&work.emu); b = work.empty; if(b != nil) work.empty = b->next; runtime·unlock(&work.emu); if(b != nil) goto haveb; } // Need to allocate. runtime·lock(&work); if(work.nchunk < sizeof *b) { work.nchunk = 1<<20; work.chunk = runtime·SysAlloc(work.nchunk); } b = (Workbuf*)work.chunk; work.chunk += sizeof *b; work.nchunk -= sizeof *b; runtime·unlock(&work); haveb: b->nobj = 0; return b; } static void putempty(Workbuf *b) { if(b == nil) return; if(work.nproc == 1) { b->next = work.empty; work.empty = b; return; } runtime·lock(&work.emu); b->next = work.empty; work.empty = b; runtime·unlock(&work.emu); } // Get a full work buffer off the work.full list, or return nil. static Workbuf* getfull(Workbuf *b) { int32 i; Workbuf *b1; if(work.nproc == 1) { // Put b on empty list. if(b != nil) { b->next = work.empty; work.empty = b; } // Grab from full list if possible. // Since work.nproc==1, no one else is // going to give us work. b = work.full; if(b != nil) work.full = b->next; return b; } putempty(b); // Grab buffer from full list if possible. for(;;) { b1 = work.full; if(b1 == nil) break; runtime·lock(&work.fmu); if(work.full != nil) { b1 = work.full; work.full = b1->next; runtime·unlock(&work.fmu); return b1; } runtime·unlock(&work.fmu); } runtime·xadd(&work.nwait, +1); for(i=0;; i++) { b1 = work.full; if(b1 != nil) { runtime·lock(&work.fmu); if(work.full != nil) { runtime·xadd(&work.nwait, -1); b1 = work.full; work.full = b1->next; runtime·unlock(&work.fmu); return b1; } runtime·unlock(&work.fmu); continue; } if(work.nwait == work.nproc) return nil; if(i < 10) { m->gcstats.nprocyield++; runtime·procyield(20); } else if(i < 20) { m->gcstats.nosyield++; runtime·osyield(); } else { m->gcstats.nsleep++; runtime·usleep(100); } } } static Workbuf* handoff(Workbuf *b) { int32 n; Workbuf *b1; // Make new buffer with half of b's pointers. b1 = getempty(nil); n = b->nobj/2; b->nobj -= n; b1->nobj = n; runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); m->gcstats.nhandoff++; m->gcstats.nhandoffcnt += n; // Put b on full list - let first half of b get stolen. runtime·lock(&work.fmu); b->next = work.full; work.full = b; runtime·unlock(&work.fmu); return b1; } // Scanstack calls scanblock on each of gp's stack segments. static void scanstack(void (*scanblock)(byte*, int64), G *gp) { M *mp; int32 n; Stktop *stk; byte *sp, *guard; stk = (Stktop*)gp->stackbase; guard = gp->stackguard; if(gp == g) { // Scanning our own stack: start at &gp. sp = (byte*)&gp; } else if((mp = gp->m) != nil && mp->helpgc) { // gchelper's stack is in active use and has no interesting pointers. return; } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). sp = gp->sched.sp; // The exception is that if the goroutine is about to enter or might // have just exited a system call, it may be executing code such // as schedlock and may have needed to start a new stack segment. // Use the stack segment and stack pointer at the time of // the system call instead, since that won't change underfoot. if(gp->gcstack != nil) { stk = (Stktop*)gp->gcstack; sp = gp->gcsp; guard = gp->gcguard; } } if(Debug > 1) runtime·printf("scanstack %d %p\n", gp->goid, sp); n = 0; while(stk) { if(sp < guard-StackGuard || (byte*)stk < sp) { runtime·printf("scanstack inconsistent: g%d#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); runtime·throw("scanstack"); } scanblock(sp, (byte*)stk - sp); sp = stk->gobuf.sp; guard = stk->stackguard; stk = (Stktop*)stk->stackbase; n++; } } // Markfin calls scanblock on the blocks that have finalizers: // the things pointed at cannot be freed until the finalizers have run. static void markfin(void *v) { uintptr size; size = 0; if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v)) runtime·throw("mark - finalizer inconsistency"); // do not mark the finalizer block itself. just mark the things it points at. scanblock(v, size); } static void debug_markfin(void *v) { uintptr size; if(!runtime·mlookup(v, &v, &size, nil)) runtime·throw("debug_mark - finalizer inconsistency"); debug_scanblock(v, size); } // Mark static void mark(void (*scan)(byte*, int64)) { G *gp; FinBlock *fb; // mark data+bss. scan(data, ebss - data); // mark stacks for(gp=runtime·allg; gp!=nil; gp=gp->alllink) { switch(gp->status){ default: runtime·printf("unexpected G.status %d\n", gp->status); runtime·throw("mark - bad status"); case Gdead: break; case Grunning: if(gp != g) runtime·throw("mark - world not stopped"); scanstack(scan, gp); break; case Grunnable: case Gsyscall: case Gwaiting: scanstack(scan, gp); break; } } // mark things pointed at by objects with finalizers if(scan == debug_scanblock) runtime·walkfintab(debug_markfin); else runtime·walkfintab(markfin); for(fb=allfin; fb; fb=fb->alllink) scanblock((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0])); // in multiproc mode, join in the queued work. scan(nil, 0); } static bool handlespecial(byte *p, uintptr size) { void (*fn)(void*); int32 nret; FinBlock *block; Finalizer *f; if(!runtime·getfinalizer(p, true, &fn, &nret)) { runtime·setblockspecial(p, false); runtime·MProf_Free(p, size); return false; } runtime·lock(&finlock); if(finq == nil || finq->cnt == finq->cap) { if(finc == nil) { finc = runtime·SysAlloc(PageSize); finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; finc->alllink = allfin; allfin = finc; } block = finc; finc = block->next; block->next = finq; finq = block; } f = &finq->fin[finq->cnt]; finq->cnt++; f->fn = fn; f->nret = nret; f->arg = p; runtime·unlock(&finlock); return true; } static void sweepspan(MSpan *s); // Sweep frees or collects finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. static void sweep(void) { MSpan *s; int64 now; now = runtime·nanotime(); for(;;) { s = work.spans; if(s == nil) break; if(!runtime·casp(&work.spans, s, s->allnext)) continue; // Stamp newly unused spans. The scavenger will use that // info to potentially give back some pages to the OS. if(s->state == MSpanFree && s->unusedsince == 0) s->unusedsince = now; if(s->state != MSpanInUse) continue; sweepspan(s); } } static void sweepspan(MSpan *s) { int32 cl, n, npages; uintptr size; byte *p; MCache *c; byte *arena_start; arena_start = runtime·mheap.arena_start; p = (byte*)(s->start << PageShift); cl = s->sizeclass; if(cl == 0) { size = s->npages< 0; n--, p += size) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & bitAllocated) == 0) continue; if((bits & bitMarked) != 0) { if(DebugMark) { if(!(bits & bitSpecial)) runtime·printf("found spurious mark on %p\n", p); *bitp &= ~(bitSpecial<mcache; if(s->sizeclass == 0) { // Free large span. runtime·unmarkspan(p, 1< sizeof(uintptr)) ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" c->local_by_size[s->sizeclass].nfree++; runtime·MCache_Free(c, p, s->sizeclass, size); } c->local_alloc -= size; c->local_nfree++; } } void runtime·gchelper(void) { // Wait until main proc is ready for mark help. runtime·lock(&work.markgate); runtime·unlock(&work.markgate); scanblock(nil, 0); // Wait until main proc is ready for sweep help. runtime·lock(&work.sweepgate); runtime·unlock(&work.sweepgate); sweep(); if(runtime·xadd(&work.ndone, +1) == work.nproc-1) runtime·notewakeup(&work.alldone); } // Initialized from $GOGC. GOGC=off means no gc. // // Next gc is after we've allocated an extra amount of // memory proportional to the amount already in use. // If gcpercent=100 and we're using 4M, we'll gc again // when we get to 8M. This keeps the gc cost in linear // proportion to the allocation cost. Adjusting gcpercent // just changes the linear constant (and also the amount of // extra memory used). static int32 gcpercent = -2; static void stealcache(void) { M *m; for(m=runtime·allm; m; m=m->alllink) runtime·MCache_ReleaseAll(m->mcache); } static void cachestats(GCStats *stats) { M *m; MCache *c; int32 i; uint64 stacks_inuse; uint64 stacks_sys; uint64 *src, *dst; if(stats) runtime·memclr((byte*)stats, sizeof(*stats)); stacks_inuse = 0; stacks_sys = 0; for(m=runtime·allm; m; m=m->alllink) { runtime·purgecachedstats(m); stacks_inuse += m->stackalloc->inuse; stacks_sys += m->stackalloc->sys; if(stats) { src = (uint64*)&m->gcstats; dst = (uint64*)stats; for(i=0; igcstats, sizeof(m->gcstats)); } c = m->mcache; for(i=0; ilocal_by_size); i++) { mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; c->local_by_size[i].nmalloc = 0; mstats.by_size[i].nfree += c->local_by_size[i].nfree; c->local_by_size[i].nfree = 0; } } mstats.stacks_inuse = stacks_inuse; mstats.stacks_sys = stacks_sys; } void runtime·gc(int32 force) { int64 t0, t1, t2, t3; uint64 heap0, heap1, obj0, obj1; byte *p; bool extra; GCStats stats; // The gc is turned off (via enablegc) until // the bootstrap has completed. // Also, malloc gets called in the guts // of a number of libraries that might be // holding locks. To avoid priority inversion // problems, don't bother trying to run gc // while holding a lock. The next mallocgc // without a lock will do the gc instead. if(!mstats.enablegc || m->locks > 0 || runtime·panicking) return; if(gcpercent == -2) { // first time through p = runtime·getenv("GOGC"); if(p == nil || p[0] == '\0') gcpercent = 100; else if(runtime·strcmp(p, (byte*)"off") == 0) gcpercent = -1; else gcpercent = runtime·atoi(p); p = runtime·getenv("GOGCTRACE"); if(p != nil) gctrace = runtime·atoi(p); } if(gcpercent < 0) return; runtime·semacquire(&runtime·worldsema); if(!force && mstats.heap_alloc < mstats.next_gc) { runtime·semrelease(&runtime·worldsema); return; } t0 = runtime·nanotime(); m->gcing = 1; runtime·stoptheworld(); cachestats(nil); heap0 = mstats.heap_alloc; obj0 = mstats.nmalloc - mstats.nfree; runtime·lock(&work.markgate); runtime·lock(&work.sweepgate); extra = false; work.nproc = 1; if(runtime·gomaxprocs > 1 && runtime·ncpu > 1) { runtime·noteclear(&work.alldone); work.nproc += runtime·helpgc(&extra); } work.nwait = 0; work.ndone = 0; runtime·unlock(&work.markgate); // let the helpers in mark(scanblock); if(DebugMark) mark(debug_scanblock); t1 = runtime·nanotime(); work.spans = runtime·mheap.allspans; runtime·unlock(&work.sweepgate); // let the helpers in sweep(); if(work.nproc > 1) runtime·notesleep(&work.alldone); t2 = runtime·nanotime(); stealcache(); cachestats(&stats); mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; m->gcing = 0; if(finq != nil) { m->locks++; // disable gc during the mallocs in newproc // kick off or wake up goroutine to run queued finalizers if(fing == nil) fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc); else if(fingwait) { fingwait = 0; runtime·ready(fing); } m->locks--; } heap1 = mstats.heap_alloc; obj1 = mstats.nmalloc - mstats.nfree; t3 = runtime·nanotime(); mstats.last_gc = t3; mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; mstats.pause_total_ns += t3 - t0; mstats.numgc++; if(mstats.debuggc) runtime·printf("pause %D\n", t3-t0); if(gctrace) { runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects," " %D(%D) handoff, %D/%D/%D yields\n", mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000, heap0>>20, heap1>>20, obj0, obj1, mstats.nmalloc, mstats.nfree, stats.nhandoff, stats.nhandoffcnt, stats.nprocyield, stats.nosyield, stats.nsleep); } runtime·MProf_GC(); runtime·semrelease(&runtime·worldsema); // If we could have used another helper proc, start one now, // in the hope that it will be available next time. // It would have been even better to start it before the collection, // but doing so requires allocating memory, so it's tricky to // coordinate. This lazy approach works out in practice: // we don't mind if the first couple gc rounds don't have quite // the maximum number of procs. runtime·starttheworld(extra); // give the queued finalizers, if any, a chance to run if(finq != nil) runtime·gosched(); if(gctrace > 1 && !force) runtime·gc(1); } void runtime·ReadMemStats(MStats *stats) { // Have to acquire worldsema to stop the world, // because stoptheworld can only be used by // one goroutine at a time, and there might be // a pending garbage collection already calling it. runtime·semacquire(&runtime·worldsema); m->gcing = 1; runtime·stoptheworld(); cachestats(nil); *stats = mstats; m->gcing = 0; runtime·semrelease(&runtime·worldsema); runtime·starttheworld(false); } static void runfinq(void) { Finalizer *f; FinBlock *fb, *next; byte *frame; uint32 framesz, framecap, i; frame = nil; framecap = 0; for(;;) { // There's no need for a lock in this section // because it only conflicts with the garbage // collector, and the garbage collector only // runs when everyone else is stopped, and // runfinq only stops at the gosched() or // during the calls in the for loop. fb = finq; finq = nil; if(fb == nil) { fingwait = 1; g->status = Gwaiting; g->waitreason = "finalizer wait"; runtime·gosched(); continue; } for(; fb; fb=next) { next = fb->next; for(i=0; icnt; i++) { f = &fb->fin[i]; framesz = sizeof(uintptr) + f->nret; if(framecap < framesz) { runtime·free(frame); frame = runtime·mal(framesz); framecap = framesz; } *(void**)frame = f->arg; runtime·setblockspecial(f->arg, false); reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret); f->fn = nil; f->arg = nil; } fb->cnt = 0; fb->next = finc; finc = fb; } runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible } } // mark the block at v of size n as allocated. // If noptr is true, mark it as having no pointers. void runtime·markallocated(void *v, uintptr n, bool noptr) { uintptr *b, obits, bits, off, shift; if(0) runtime·printf("markallocated %p+%p\n", v, n); if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) return; // not allocated, so okay off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; if((bits & bitAllocated) != 0) { runtime·printf("checkfreed %p+%p: off=%p have=%p\n", v, n, off, bits & bitMask); runtime·throw("checkfreed: not freed"); } } // mark the span of memory at v as having n blocks of the given size. // if leftover is true, there is left over space at the end of the span. void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) { uintptr *b, off, shift; byte *p; if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markspan: bad pointer"); p = v; if(leftover) // mark a boundary just past end of last block too n++; for(; n-- > 0; p += size) { // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markspan: bad pointer"); p = v; off = p - (uintptr*)runtime·mheap.arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime·throw("markspan: unaligned pointer"); b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime·throw("unmarkspan: unaligned length"); // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. n /= wordsPerBitmapWord; while(n-- > 0) *b-- = 0; } bool runtime·blockspecial(void *v) { uintptr *b, off, shift; if(DebugMark) return true; off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; return (*b & (bitSpecial<arena_used - h->arena_start) / wordsPerBitmapWord; n = (n+bitmapChunk-1) & ~(bitmapChunk-1); if(h->bitmap_mapped >= n) return; runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped); h->bitmap_mapped = n; }