// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector (GC). // // GC is: // - mark&sweep // - mostly precise (with the exception of some C-allocated objects, assembly frames/arguments, etc) // - parallel (up to MaxGcproc threads) // - partially concurrent (mark is stop-the-world, while sweep is concurrent) // - non-moving/non-compacting // - full (non-partial) // // GC rate. // Next GC is after we've allocated an extra amount of memory proportional to // the amount already in use. The proportion is controlled by GOGC environment variable // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M // (this mark is tracked in next_gc variable). This keeps the GC cost in linear // proportion to the allocation cost. Adjusting GOGC just changes the linear constant // (and also the amount of extra memory used). // // Concurrent sweep. // The sweep phase proceeds concurrently with normal program execution. // The heap is swept span-by-span both lazily (when a goroutine needs another span) // and concurrently in a background goroutine (this helps programs that are not CPU bound). // However, at the end of the stop-the-world GC phase we don't know the size of the live heap, // and so next_gc calculation is tricky and happens as follows. // At the end of the stop-the-world phase next_gc is conservatively set based on total // heap size; all spans are marked as "needs sweeping". // Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory. // The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc // closer to the target value. However, this is not enough to avoid over-allocating memory. // Consider that a goroutine wants to allocate a new span for a large object and // there are no free swept spans, but there are small-object unswept spans. // If the goroutine naively allocates a new span, it can surpass the yet-unknown // target next_gc value. In order to prevent such cases (1) when a goroutine needs // to allocate a new small-object span, it sweeps small-object spans for the same // object size until it frees at least one object; (2) when a goroutine needs to // allocate large-object span from heap, it sweeps spans until it frees at least // that many pages into heap. Together these two measures ensure that we don't surpass // target next_gc value by a large margin. There is an exception: if a goroutine sweeps // and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span, // but there can still be other one-page unswept spans which could be combined into a two-page span. // It's critical to ensure that no operations proceed on unswept spans (that would corrupt // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. // When a goroutine explicitly frees an object or sets a finalizer, it ensures that // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). // The finalizer goroutine is kicked off only when all spans are swept. // When the next GC starts, it sweeps all not-yet-swept spans (if any). #include "runtime.h" #include "arch_GOARCH.h" #include "malloc.h" #include "stack.h" #include "mgc0.h" #include "chan.h" #include "race.h" #include "type.h" #include "typekind.h" #include "funcdata.h" #include "../../cmd/ld/textflag.h" enum { Debug = 0, CollectStats = 0, ConcurrentSweep = 1, WorkbufSize = 16*1024, FinBlockSize = 4*1024, handoffThreshold = 4, IntermediateBufferCapacity = 64, // Bits in type information PRECISE = 1, LOOP = 2, PC_BITS = PRECISE | LOOP, RootData = 0, RootBss = 1, RootFinalizers = 2, RootSpanTypes = 3, RootFlushCaches = 4, RootCount = 5, }; #define GcpercentUnknown (-2) // Initialized from $GOGC. GOGC=off means no gc. static int32 gcpercent = GcpercentUnknown; static struct { Lock; void* head; } pools; void sync·runtime_registerPool(void **p) { runtime·lock(&pools); p[0] = pools.head; pools.head = p; runtime·unlock(&pools); } static void clearpools(void) { void **pool, **next; P *p, **pp; MCache *c; uintptr off; int32 i; // clear sync.Pool's for(pool = pools.head; pool != nil; pool = next) { next = pool[0]; pool[0] = nil; // next pool[1] = nil; // local pool[2] = nil; // localSize off = (uintptr)pool[3] / sizeof(void*); pool[off+0] = nil; // global slice pool[off+1] = nil; pool[off+2] = nil; } pools.head = nil; for(pp=runtime·allp; p=*pp; pp++) { // clear tinyalloc pool c = p->mcache; if(c != nil) { c->tiny = nil; c->tinysize = 0; } // clear defer pools for(i=0; ideferpool); i++) p->deferpool[i] = nil; } } // Holding worldsema grants an M the right to try to stop the world. // The procedure is: // // runtime·semacquire(&runtime·worldsema); // m->gcing = 1; // runtime·stoptheworld(); // // ... do stuff ... // // m->gcing = 0; // runtime·semrelease(&runtime·worldsema); // runtime·starttheworld(); // uint32 runtime·worldsema = 1; typedef struct Obj Obj; struct Obj { byte *p; // data pointer uintptr n; // size of data in bytes uintptr ti; // type info }; typedef struct Workbuf Workbuf; struct Workbuf { #define SIZE (WorkbufSize-sizeof(LFNode)-sizeof(uintptr)) LFNode node; // must be first uintptr nobj; Obj obj[SIZE/sizeof(Obj) - 1]; uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)]; #undef SIZE }; typedef struct Finalizer Finalizer; struct Finalizer { FuncVal *fn; void *arg; uintptr nret; Type *fint; PtrType *ot; }; typedef struct FinBlock FinBlock; struct FinBlock { FinBlock *alllink; FinBlock *next; int32 cnt; int32 cap; Finalizer fin[1]; }; extern byte data[]; extern byte edata[]; extern byte bss[]; extern byte ebss[]; extern byte gcdata[]; extern byte gcbss[]; static Lock finlock; // protects the following variables static FinBlock *finq; // list of finalizers that are to be executed static FinBlock *finc; // cache of free blocks static FinBlock *allfin; // list of all blocks bool runtime·fingwait; bool runtime·fingwake; static Lock gclock; static G* fing; static void runfinq(void); static void bgsweep(void); static Workbuf* getempty(Workbuf*); static Workbuf* getfull(Workbuf*); static void putempty(Workbuf*); static Workbuf* handoff(Workbuf*); static void gchelperstart(void); static void flushallmcaches(void); static bool scanframe(Stkframe *frame, void *wbufp); static void addstackroots(G *gp, Workbuf **wbufp); static FuncVal runfinqv = {runfinq}; static FuncVal bgsweepv = {bgsweep}; static struct { uint64 full; // lock-free list of full blocks uint64 empty; // lock-free list of empty blocks byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait uint32 nproc; int64 tstart; volatile uint32 nwait; volatile uint32 ndone; Note alldone; ParFor *markfor; Lock; byte *chunk; uintptr nchunk; } work; enum { GC_DEFAULT_PTR = GC_NUM_INSTR, GC_CHAN, GC_NUM_INSTR2 }; static struct { struct { uint64 sum; uint64 cnt; } ptr; uint64 nbytes; struct { uint64 sum; uint64 cnt; uint64 notype; uint64 typelookup; } obj; uint64 rescan; uint64 rescanbytes; uint64 instr[GC_NUM_INSTR2]; uint64 putempty; uint64 getfull; struct { uint64 foundbit; uint64 foundword; uint64 foundspan; } flushptrbuf; struct { uint64 foundbit; uint64 foundword; uint64 foundspan; } markonly; uint32 nbgsweep; uint32 npausesweep; } gcstats; // markonly marks an object. It returns true if the object // has been marked by this function, false otherwise. // This function doesn't append the object to any buffer. static bool markonly(void *obj) { byte *p; uintptr *bitp, bits, shift, x, xbits, off, j; MSpan *s; PageID k; // Words outside the arena cannot be pointers. if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used) return false; // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Find bits for this word. off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) { if(CollectStats) runtime·xadd64(&gcstats.markonly.foundbit, 1); goto found; } // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { shift = j; bits = xbits>>shift; if(CollectStats) runtime·xadd64(&gcstats.markonly.foundword, 1); goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; x -= (uintptr)runtime·mheap.arena_start>>PageShift; s = runtime·mheap.spans[x]; if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse) return false; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { uintptr size = s->elemsize; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; if(CollectStats) runtime·xadd64(&gcstats.markonly.foundspan, 1); found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) return false; if(work.nproc == 1) *bitp |= bitMarked< PtrTarget (pointer targets) // ↑ | // | | // `----------' // flushptrbuf // (find block start, mark and enqueue) static void flushptrbuf(Scanbuf *sbuf) { byte *p, *arena_start, *obj; uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n; MSpan *s; PageID k; Obj *wp; Workbuf *wbuf; PtrTarget *ptrbuf; PtrTarget *ptrbuf_end; arena_start = runtime·mheap.arena_start; wp = sbuf->wp; wbuf = sbuf->wbuf; nobj = sbuf->nobj; ptrbuf = sbuf->ptr.begin; ptrbuf_end = sbuf->ptr.pos; n = ptrbuf_end - sbuf->ptr.begin; sbuf->ptr.pos = sbuf->ptr.begin; if(CollectStats) { runtime·xadd64(&gcstats.ptr.sum, n); runtime·xadd64(&gcstats.ptr.cnt, 1); } // If buffer is nearly full, get a new one. if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; if(n >= nelem(wbuf->obj)) runtime·throw("ptrbuf has to be smaller than WorkBuf"); } while(ptrbuf < ptrbuf_end) { obj = ptrbuf->p; ti = ptrbuf->ti; ptrbuf++; // obj belongs to interval [mheap.arena_start, mheap.arena_used). if(Debug > 1) { if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used) runtime·throw("object is outside of mheap"); } // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) { obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); ti = 0; } // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) { if(CollectStats) runtime·xadd64(&gcstats.flushptrbuf.foundbit, 1); goto found; } ti = 0; // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { obj = (byte*)obj - (shift-j)*PtrSize; shift = j; bits = xbits>>shift; if(CollectStats) runtime·xadd64(&gcstats.flushptrbuf.foundword, 1); goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; x -= (uintptr)arena_start>>PageShift; s = runtime·mheap.spans[x]; if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { size = s->elemsize; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; if(CollectStats) runtime·xadd64(&gcstats.flushptrbuf.foundspan, 1); found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) continue; if(work.nproc == 1) *bitp |= bitMarked<> PageShift; x -= (uintptr)arena_start>>PageShift; s = runtime·mheap.spans[x]; PREFETCH(obj); *wp = (Obj){obj, s->elemsize, ti}; wp++; nobj++; continue_obj:; } // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } sbuf->wp = wp; sbuf->wbuf = wbuf; sbuf->nobj = nobj; } static void flushobjbuf(Scanbuf *sbuf) { uintptr nobj, off; Obj *wp, obj; Workbuf *wbuf; Obj *objbuf; Obj *objbuf_end; wp = sbuf->wp; wbuf = sbuf->wbuf; nobj = sbuf->nobj; objbuf = sbuf->obj.begin; objbuf_end = sbuf->obj.pos; sbuf->obj.pos = sbuf->obj.begin; while(objbuf < objbuf_end) { obj = *objbuf++; // Align obj.b to a word boundary. off = (uintptr)obj.p & (PtrSize-1); if(off != 0) { obj.p += PtrSize - off; obj.n -= PtrSize - off; obj.ti = 0; } if(obj.p == nil || obj.n == 0) continue; // If buffer is full, get a new one. if(wbuf == nil || nobj >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; } *wp = obj; wp++; nobj++; } // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } sbuf->wp = wp; sbuf->wbuf = wbuf; sbuf->nobj = nobj; } // Program that scans the whole block and treats every block element as a potential pointer static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR}; // Hchan program static uintptr chanProg[2] = {0, GC_CHAN}; // Local variables of a program fragment or loop typedef struct Frame Frame; struct Frame { uintptr count, elemsize, b; uintptr *loop_or_ret; }; // Sanity check for the derived type info objti. static void checkptr(void *obj, uintptr objti) { uintptr *pc1, *pc2, type, tisize, i, j, x; byte *objstart; Type *t; MSpan *s; if(!Debug) runtime·throw("checkptr is debug only"); if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used) return; type = runtime·gettype(obj); t = (Type*)(type & ~(uintptr)(PtrSize-1)); if(t == nil) return; x = (uintptr)obj >> PageShift; x -= (uintptr)(runtime·mheap.arena_start)>>PageShift; s = runtime·mheap.spans[x]; objstart = (byte*)((uintptr)s->start<sizeclass != 0) { i = ((byte*)obj - objstart)/s->elemsize; objstart += i*s->elemsize; } tisize = *(uintptr*)objti; // Sanity check for object size: it should fit into the memory block. if((byte*)obj + tisize > objstart + s->elemsize) { runtime·printf("object of type '%S' at %p/%p does not fit in block %p/%p\n", *t->string, obj, tisize, objstart, s->elemsize); runtime·throw("invalid gc type info"); } if(obj != objstart) return; // If obj points to the beginning of the memory block, // check type info as well. if(t->string == nil || // Gob allocates unsafe pointers for indirection. (runtime·strcmp(t->string->str, (byte*)"unsafe.Pointer") && // Runtime and gc think differently about closures. runtime·strstr(t->string->str, (byte*)"struct { F uintptr") != t->string->str)) { pc1 = (uintptr*)objti; pc2 = (uintptr*)t->gc; // A simple best-effort check until first GC_END. for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) { if(pc1[j] != pc2[j]) { runtime·printf("invalid gc type info for '%s' at %p, type info %p, block info %p\n", t->string ? (int8*)t->string->str : (int8*)"?", j, pc1[j], pc2[j]); runtime·throw("invalid gc type info"); } } } } // scanblock scans a block of n bytes starting at pointer b for references // to other objects, scanning any it finds recursively until there are no // unscanned objects left. Instead of using an explicit recursion, it keeps // a work list in the Workbuf* structures and loops in the main function // body. Keeping an explicit work list is easier on the stack allocator and // more efficient. static void scanblock(Workbuf *wbuf, bool keepworking) { byte *b, *arena_start, *arena_used; uintptr n, i, end_b, elemsize, size, ti, objti, count, type, nobj; uintptr *pc, precise_type, nominal_size; uintptr *chan_ret, chancap; void *obj; Type *t; Slice *sliceptr; String *stringptr; Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4]; BufferList *scanbuffers; Scanbuf sbuf; Eface *eface; Iface *iface; Hchan *chan; ChanType *chantype; Obj *wp; if(sizeof(Workbuf) % WorkbufSize != 0) runtime·throw("scanblock: size of Workbuf is suboptimal"); // Memory arena parameters. arena_start = runtime·mheap.arena_start; arena_used = runtime·mheap.arena_used; stack_ptr = stack+nelem(stack)-1; precise_type = false; nominal_size = 0; if(wbuf) { nobj = wbuf->nobj; wp = &wbuf->obj[nobj]; } else { nobj = 0; wp = nil; } // Initialize sbuf scanbuffers = &bufferList[m->helpgc]; sbuf.ptr.begin = sbuf.ptr.pos = &scanbuffers->ptrtarget[0]; sbuf.ptr.end = sbuf.ptr.begin + nelem(scanbuffers->ptrtarget); sbuf.obj.begin = sbuf.obj.pos = &scanbuffers->obj[0]; sbuf.obj.end = sbuf.obj.begin + nelem(scanbuffers->obj); sbuf.wbuf = wbuf; sbuf.wp = wp; sbuf.nobj = nobj; // (Silence the compiler) chan = nil; chantype = nil; chan_ret = nil; goto next_block; for(;;) { // Each iteration scans the block b of length n, queueing pointers in // the work buffer. if(CollectStats) { runtime·xadd64(&gcstats.nbytes, n); runtime·xadd64(&gcstats.obj.sum, sbuf.nobj); runtime·xadd64(&gcstats.obj.cnt, 1); } if(ti != 0) { if(Debug > 1) { runtime·printf("scanblock %p %D ti %p\n", b, (int64)n, ti); } pc = (uintptr*)(ti & ~(uintptr)PC_BITS); precise_type = (ti & PRECISE); stack_top.elemsize = pc[0]; if(!precise_type) nominal_size = pc[0]; if(ti & LOOP) { stack_top.count = 0; // 0 means an infinite number of iterations stack_top.loop_or_ret = pc+1; } else { stack_top.count = 1; } if(Debug) { // Simple sanity check for provided type info ti: // The declared size of the object must be not larger than the actual size // (it can be smaller due to inferior pointers). // It's difficult to make a comprehensive check due to inferior pointers, // reflection, gob, etc. if(pc[0] > n) { runtime·printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n); runtime·throw("invalid gc type info"); } } } else if(UseSpanType) { if(CollectStats) runtime·xadd64(&gcstats.obj.notype, 1); type = runtime·gettype(b); if(type != 0) { if(CollectStats) runtime·xadd64(&gcstats.obj.typelookup, 1); t = (Type*)(type & ~(uintptr)(PtrSize-1)); switch(type & (PtrSize-1)) { case TypeInfo_SingleObject: pc = (uintptr*)t->gc; precise_type = true; // type information about 'b' is precise stack_top.count = 1; stack_top.elemsize = pc[0]; break; case TypeInfo_Array: pc = (uintptr*)t->gc; if(pc[0] == 0) goto next_block; precise_type = true; // type information about 'b' is precise stack_top.count = 0; // 0 means an infinite number of iterations stack_top.elemsize = pc[0]; stack_top.loop_or_ret = pc+1; break; case TypeInfo_Chan: chan = (Hchan*)b; chantype = (ChanType*)t; chan_ret = nil; pc = chanProg; break; default: if(Debug > 1) runtime·printf("scanblock %p %D type %p %S\n", b, (int64)n, type, *t->string); runtime·throw("scanblock: invalid type"); return; } if(Debug > 1) runtime·printf("scanblock %p %D type %p %S pc=%p\n", b, (int64)n, type, *t->string, pc); } else { pc = defaultProg; if(Debug > 1) runtime·printf("scanblock %p %D unknown type\n", b, (int64)n); } } else { pc = defaultProg; if(Debug > 1) runtime·printf("scanblock %p %D no span types\n", b, (int64)n); } if(IgnorePreciseGC) pc = defaultProg; pc++; stack_top.b = (uintptr)b; end_b = (uintptr)b + n - PtrSize; for(;;) { if(CollectStats) runtime·xadd64(&gcstats.instr[pc[0]], 1); obj = nil; objti = 0; switch(pc[0]) { case GC_PTR: obj = *(void**)(stack_top.b + pc[1]); objti = pc[2]; if(Debug > 2) runtime·printf("gc_ptr @%p: %p ti=%p\n", stack_top.b+pc[1], obj, objti); pc += 3; if(Debug) checkptr(obj, objti); break; case GC_SLICE: sliceptr = (Slice*)(stack_top.b + pc[1]); if(Debug > 2) runtime·printf("gc_slice @%p: %p/%D/%D\n", sliceptr, sliceptr->array, (int64)sliceptr->len, (int64)sliceptr->cap); if(sliceptr->cap != 0) { obj = sliceptr->array; // Can't use slice element type for scanning, // because if it points to an array embedded // in the beginning of a struct, // we will scan the whole struct as the slice. // So just obtain type info from heap. } pc += 3; break; case GC_APTR: obj = *(void**)(stack_top.b + pc[1]); if(Debug > 2) runtime·printf("gc_aptr @%p: %p\n", stack_top.b+pc[1], obj); pc += 2; break; case GC_STRING: stringptr = (String*)(stack_top.b + pc[1]); if(Debug > 2) runtime·printf("gc_string @%p: %p/%D\n", stack_top.b+pc[1], stringptr->str, (int64)stringptr->len); if(stringptr->len != 0) markonly(stringptr->str); pc += 2; continue; case GC_EFACE: eface = (Eface*)(stack_top.b + pc[1]); pc += 2; if(Debug > 2) runtime·printf("gc_eface @%p: %p %p\n", stack_top.b+pc[1], eface->type, eface->data); if(eface->type == nil) continue; // eface->type t = eface->type; if((void*)t >= arena_start && (void*)t < arena_used) { *sbuf.ptr.pos++ = (PtrTarget){t, 0}; if(sbuf.ptr.pos == sbuf.ptr.end) flushptrbuf(&sbuf); } // eface->data if(eface->data >= arena_start && eface->data < arena_used) { if(t->size <= sizeof(void*)) { if((t->kind & KindNoPointers)) continue; obj = eface->data; if((t->kind & ~KindNoPointers) == KindPtr) objti = (uintptr)((PtrType*)t)->elem->gc; } else { obj = eface->data; objti = (uintptr)t->gc; } } break; case GC_IFACE: iface = (Iface*)(stack_top.b + pc[1]); pc += 2; if(Debug > 2) runtime·printf("gc_iface @%p: %p/%p %p\n", stack_top.b+pc[1], iface->tab, nil, iface->data); if(iface->tab == nil) continue; // iface->tab if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) { *sbuf.ptr.pos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc}; if(sbuf.ptr.pos == sbuf.ptr.end) flushptrbuf(&sbuf); } // iface->data if(iface->data >= arena_start && iface->data < arena_used) { t = iface->tab->type; if(t->size <= sizeof(void*)) { if((t->kind & KindNoPointers)) continue; obj = iface->data; if((t->kind & ~KindNoPointers) == KindPtr) objti = (uintptr)((PtrType*)t)->elem->gc; } else { obj = iface->data; objti = (uintptr)t->gc; } } break; case GC_DEFAULT_PTR: while(stack_top.b <= end_b) { obj = *(byte**)stack_top.b; if(Debug > 2) runtime·printf("gc_default_ptr @%p: %p\n", stack_top.b, obj); stack_top.b += PtrSize; if(obj >= arena_start && obj < arena_used) { *sbuf.ptr.pos++ = (PtrTarget){obj, 0}; if(sbuf.ptr.pos == sbuf.ptr.end) flushptrbuf(&sbuf); } } goto next_block; case GC_END: if(--stack_top.count != 0) { // Next iteration of a loop if possible. stack_top.b += stack_top.elemsize; if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) { pc = stack_top.loop_or_ret; continue; } i = stack_top.b; } else { // Stack pop if possible. if(stack_ptr+1 < stack+nelem(stack)) { pc = stack_top.loop_or_ret; stack_top = *(++stack_ptr); continue; } i = (uintptr)b + nominal_size; } if(!precise_type) { // Quickly scan [b+i,b+n) for possible pointers. for(; i<=end_b; i+=PtrSize) { if(*(byte**)i != nil) { // Found a value that may be a pointer. // Do a rescan of the entire block. enqueue((Obj){b, n, 0}, &sbuf.wbuf, &sbuf.wp, &sbuf.nobj); if(CollectStats) { runtime·xadd64(&gcstats.rescan, 1); runtime·xadd64(&gcstats.rescanbytes, n); } break; } } } goto next_block; case GC_ARRAY_START: i = stack_top.b + pc[1]; count = pc[2]; elemsize = pc[3]; pc += 4; // Stack push. *stack_ptr-- = stack_top; stack_top = (Frame){count, elemsize, i, pc}; continue; case GC_ARRAY_NEXT: if(--stack_top.count != 0) { stack_top.b += stack_top.elemsize; pc = stack_top.loop_or_ret; } else { // Stack pop. stack_top = *(++stack_ptr); pc += 1; } continue; case GC_CALL: // Stack push. *stack_ptr-- = stack_top; stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/}; pc = (uintptr*)((byte*)pc + *(int32*)(pc+2)); // target of the CALL instruction continue; case GC_REGION: obj = (void*)(stack_top.b + pc[1]); size = pc[2]; objti = pc[3]; pc += 4; if(Debug > 2) runtime·printf("gc_region @%p: %D %p\n", stack_top.b+pc[1], (int64)size, objti); *sbuf.obj.pos++ = (Obj){obj, size, objti}; if(sbuf.obj.pos == sbuf.obj.end) flushobjbuf(&sbuf); continue; case GC_CHAN_PTR: chan = *(Hchan**)(stack_top.b + pc[1]); if(Debug > 2 && chan != nil) runtime·printf("gc_chan_ptr @%p: %p/%D/%D %p\n", stack_top.b+pc[1], chan, (int64)chan->qcount, (int64)chan->dataqsiz, pc[2]); if(chan == nil) { pc += 3; continue; } if(markonly(chan)) { chantype = (ChanType*)pc[2]; if(!(chantype->elem->kind & KindNoPointers)) { // Start chanProg. chan_ret = pc+3; pc = chanProg+1; continue; } } pc += 3; continue; case GC_CHAN: // There are no heap pointers in struct Hchan, // so we can ignore the leading sizeof(Hchan) bytes. if(!(chantype->elem->kind & KindNoPointers)) { // Channel's buffer follows Hchan immediately in memory. // Size of buffer (cap(c)) is second int in the chan struct. chancap = ((uintgo*)chan)[1]; if(chancap > 0) { // TODO(atom): split into two chunks so that only the // in-use part of the circular buffer is scanned. // (Channel routines zero the unused part, so the current // code does not lead to leaks, it's just a little inefficient.) *sbuf.obj.pos++ = (Obj){(byte*)chan+runtime·Hchansize, chancap*chantype->elem->size, (uintptr)chantype->elem->gc | PRECISE | LOOP}; if(sbuf.obj.pos == sbuf.obj.end) flushobjbuf(&sbuf); } } if(chan_ret == nil) goto next_block; pc = chan_ret; continue; default: runtime·printf("runtime: invalid GC instruction %p at %p\n", pc[0], pc); runtime·throw("scanblock: invalid GC instruction"); return; } if(obj >= arena_start && obj < arena_used) { *sbuf.ptr.pos++ = (PtrTarget){obj, objti}; if(sbuf.ptr.pos == sbuf.ptr.end) flushptrbuf(&sbuf); } } next_block: // Done scanning [b, b+n). Prepare for the next iteration of // the loop by setting b, n, ti to the parameters for the next block. if(sbuf.nobj == 0) { flushptrbuf(&sbuf); flushobjbuf(&sbuf); if(sbuf.nobj == 0) { if(!keepworking) { if(sbuf.wbuf) putempty(sbuf.wbuf); return; } // Emptied our buffer: refill. sbuf.wbuf = getfull(sbuf.wbuf); if(sbuf.wbuf == nil) return; sbuf.nobj = sbuf.wbuf->nobj; sbuf.wp = sbuf.wbuf->obj + sbuf.wbuf->nobj; } } // Fetch b from the work buffer. --sbuf.wp; b = sbuf.wp->p; n = sbuf.wp->n; ti = sbuf.wp->ti; sbuf.nobj--; } } // Append obj to the work buffer. // _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer. static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj) { uintptr nobj, off; Obj *wp; Workbuf *wbuf; if(Debug > 1) runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti); // Align obj.b to a word boundary. off = (uintptr)obj.p & (PtrSize-1); if(off != 0) { obj.p += PtrSize - off; obj.n -= PtrSize - off; obj.ti = 0; } if(obj.p == nil || obj.n == 0) return; // Load work buffer state wp = *_wp; wbuf = *_wbuf; nobj = *_nobj; // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } // If buffer is full, get a new one. if(wbuf == nil || nobj >= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; } *wp = obj; wp++; nobj++; // Save work buffer state *_wp = wp; *_wbuf = wbuf; *_nobj = nobj; } static void enqueue1(Workbuf **wbufp, Obj obj) { Workbuf *wbuf; wbuf = *wbufp; if(wbuf->nobj >= nelem(wbuf->obj)) *wbufp = wbuf = getempty(wbuf); wbuf->obj[wbuf->nobj++] = obj; } static void markroot(ParFor *desc, uint32 i) { Workbuf *wbuf; FinBlock *fb; MHeap *h; MSpan **allspans, *s; uint32 spanidx, sg; G *gp; void *p; USED(&desc); wbuf = getempty(nil); // Note: if you add a case here, please also update heapdump.c:dumproots. switch(i) { case RootData: enqueue1(&wbuf, (Obj){data, edata - data, (uintptr)gcdata}); break; case RootBss: enqueue1(&wbuf, (Obj){bss, ebss - bss, (uintptr)gcbss}); break; case RootFinalizers: for(fb=allfin; fb; fb=fb->alllink) enqueue1(&wbuf, (Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0}); break; case RootSpanTypes: // mark span types and MSpan.specials (to walk spans only once) h = &runtime·mheap; sg = h->sweepgen; allspans = h->allspans; for(spanidx=0; spanidxsweepgen != sg) { runtime·printf("sweep %d %d\n", s->sweepgen, sg); runtime·throw("gc: unswept span"); } if(s->state != MSpanInUse) continue; // The garbage collector ignores type pointers stored in MSpan.types: // - Compiler-generated types are stored outside of heap. // - The reflect package has runtime-generated types cached in its data structures. // The garbage collector relies on finding the references via that cache. if(s->types.compression == MTypes_Words || s->types.compression == MTypes_Bytes) markonly((byte*)s->types.data); for(sp = s->specials; sp != nil; sp = sp->next) { if(sp->kind != KindSpecialFinalizer) continue; // don't mark finalized object, but scan it so we // retain everything it points to. spf = (SpecialFinalizer*)sp; // A finalizer can be set for an inner byte of an object, find object beginning. p = (void*)((s->start << PageShift) + spf->offset/s->elemsize*s->elemsize); enqueue1(&wbuf, (Obj){p, s->elemsize, 0}); enqueue1(&wbuf, (Obj){(void*)&spf->fn, PtrSize, 0}); enqueue1(&wbuf, (Obj){(void*)&spf->fint, PtrSize, 0}); enqueue1(&wbuf, (Obj){(void*)&spf->ot, PtrSize, 0}); } } break; case RootFlushCaches: flushallmcaches(); break; default: // the rest is scanning goroutine stacks if(i - RootCount >= runtime·allglen) runtime·throw("markroot: bad index"); gp = runtime·allg[i - RootCount]; // remember when we've first observed the G blocked // needed only to output in traceback if((gp->status == Gwaiting || gp->status == Gsyscall) && gp->waitsince == 0) gp->waitsince = work.tstart; addstackroots(gp, &wbuf); break; } if(wbuf) scanblock(wbuf, false); } // Get an empty work buffer off the work.empty list, // allocating new buffers as needed. static Workbuf* getempty(Workbuf *b) { if(b != nil) runtime·lfstackpush(&work.full, &b->node); b = (Workbuf*)runtime·lfstackpop(&work.empty); if(b == nil) { // Need to allocate. runtime·lock(&work); if(work.nchunk < sizeof *b) { work.nchunk = 1<<20; work.chunk = runtime·SysAlloc(work.nchunk, &mstats.gc_sys); if(work.chunk == nil) runtime·throw("runtime: cannot allocate memory"); } b = (Workbuf*)work.chunk; work.chunk += sizeof *b; work.nchunk -= sizeof *b; runtime·unlock(&work); } b->nobj = 0; return b; } static void putempty(Workbuf *b) { if(CollectStats) runtime·xadd64(&gcstats.putempty, 1); runtime·lfstackpush(&work.empty, &b->node); } // Get a full work buffer off the work.full list, or return nil. static Workbuf* getfull(Workbuf *b) { int32 i; if(CollectStats) runtime·xadd64(&gcstats.getfull, 1); if(b != nil) runtime·lfstackpush(&work.empty, &b->node); b = (Workbuf*)runtime·lfstackpop(&work.full); if(b != nil || work.nproc == 1) return b; runtime·xadd(&work.nwait, +1); for(i=0;; i++) { if(work.full != 0) { runtime·xadd(&work.nwait, -1); b = (Workbuf*)runtime·lfstackpop(&work.full); if(b != nil) return b; runtime·xadd(&work.nwait, +1); } if(work.nwait == work.nproc) return nil; if(i < 10) { m->gcstats.nprocyield++; runtime·procyield(20); } else if(i < 20) { m->gcstats.nosyield++; runtime·osyield(); } else { m->gcstats.nsleep++; runtime·usleep(100); } } } static Workbuf* handoff(Workbuf *b) { int32 n; Workbuf *b1; // Make new buffer with half of b's pointers. b1 = getempty(nil); n = b->nobj/2; b->nobj -= n; b1->nobj = n; runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); m->gcstats.nhandoff++; m->gcstats.nhandoffcnt += n; // Put b on full list - let first half of b get stolen. runtime·lfstackpush(&work.full, &b->node); return b1; } extern byte pclntab[]; // base for f->ptrsoff BitVector runtime·stackmapdata(StackMap *stackmap, int32 n) { if(n < 0 || n >= stackmap->n) runtime·throw("stackmapdata: index out of range"); return (BitVector){stackmap->nbit, stackmap->data + n*((stackmap->nbit+31)/32)}; } // Scans an interface data value when the interface type indicates // that it is a pointer. static void scaninterfacedata(uintptr bits, byte *scanp, bool afterprologue, void *wbufp) { Itab *tab; Type *type; if(runtime·precisestack && afterprologue) { if(bits == BitsIface) { tab = *(Itab**)scanp; if(tab->type->size <= sizeof(void*) && (tab->type->kind & KindNoPointers)) return; } else { // bits == BitsEface type = *(Type**)scanp; if(type->size <= sizeof(void*) && (type->kind & KindNoPointers)) return; } } enqueue1(wbufp, (Obj){scanp+PtrSize, PtrSize, 0}); } // Starting from scanp, scans words corresponding to set bits. static void scanbitvector(Func *f, bool precise, byte *scanp, BitVector *bv, bool afterprologue, void *wbufp) { uintptr word, bits; uint32 *wordp; int32 i, remptrs; byte *p; wordp = bv->data; for(remptrs = bv->n; remptrs > 0; remptrs -= 32) { word = *wordp++; if(remptrs < 32) i = remptrs; else i = 32; i /= BitsPerPointer; for(; i > 0; i--) { bits = word & 3; switch(bits) { case BitsDead: if(runtime·debug.gcdead) *(uintptr*)scanp = PoisonGC; break; case BitsScalar: break; case BitsPointer: p = *(byte**)scanp; if(p != nil) { if(Debug > 2) runtime·printf("frame %s @%p: ptr %p\n", runtime·funcname(f), scanp, p); if(precise && (p < (byte*)PageSize || (uintptr)p == PoisonGC || (uintptr)p == PoisonStack)) { // Looks like a junk value in a pointer slot. // Liveness analysis wrong? m->traceback = 2; runtime·printf("bad pointer in frame %s at %p: %p\n", runtime·funcname(f), scanp, p); runtime·throw("bad pointer in scanbitvector"); } enqueue1(wbufp, (Obj){scanp, PtrSize, 0}); } break; case BitsMultiWord: p = scanp; word >>= BitsPerPointer; scanp += PtrSize; i--; if(i == 0) { // Get next chunk of bits remptrs -= 32; word = *wordp++; if(remptrs < 32) i = remptrs; else i = 32; i /= BitsPerPointer; } switch(word & 3) { case BitsString: if(Debug > 2) runtime·printf("frame %s @%p: string %p/%D\n", runtime·funcname(f), p, ((String*)p)->str, (int64)((String*)p)->len); if(((String*)p)->len != 0) markonly(((String*)p)->str); break; case BitsSlice: word >>= BitsPerPointer; scanp += PtrSize; i--; if(i == 0) { // Get next chunk of bits remptrs -= 32; word = *wordp++; if(remptrs < 32) i = remptrs; else i = 32; i /= BitsPerPointer; } if(Debug > 2) runtime·printf("frame %s @%p: slice %p/%D/%D\n", runtime·funcname(f), p, ((Slice*)p)->array, (int64)((Slice*)p)->len, (int64)((Slice*)p)->cap); if(((Slice*)p)->cap < ((Slice*)p)->len) { m->traceback = 2; runtime·printf("bad slice in frame %s at %p: %p/%p/%p\n", runtime·funcname(f), p, ((byte**)p)[0], ((byte**)p)[1], ((byte**)p)[2]); runtime·throw("slice capacity smaller than length"); } if(((Slice*)p)->cap != 0) enqueue1(wbufp, (Obj){p, PtrSize, 0}); break; case BitsIface: case BitsEface: if(*(byte**)p != nil) { if(Debug > 2) { if((word&3) == BitsEface) runtime·printf("frame %s @%p: eface %p %p\n", runtime·funcname(f), p, ((uintptr*)p)[0], ((uintptr*)p)[1]); else runtime·printf("frame %s @%p: iface %p %p\n", runtime·funcname(f), p, ((uintptr*)p)[0], ((uintptr*)p)[1]); } scaninterfacedata(word & 3, p, afterprologue, wbufp); } break; } } word >>= BitsPerPointer; scanp += PtrSize; } } } // Scan a stack frame: local variables and function arguments/results. static bool scanframe(Stkframe *frame, void *wbufp) { Func *f; StackMap *stackmap; BitVector bv; uintptr size; uintptr targetpc; int32 pcdata; bool afterprologue; bool precise; f = frame->fn; targetpc = frame->pc; if(targetpc != f->entry) targetpc--; pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc); if(pcdata == -1) { // We do not have a valid pcdata value but there might be a // stackmap for this function. It is likely that we are looking // at the function prologue, assume so and hope for the best. pcdata = 0; } // Scan local variables if stack frame has been allocated. // Use pointer information if known. afterprologue = (frame->varp > (byte*)frame->sp); precise = false; if(afterprologue) { stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps); if(stackmap == nil) { // No locals information, scan everything. size = frame->varp - (byte*)frame->sp; if(Debug > 2) runtime·printf("frame %s unsized locals %p+%p\n", runtime·funcname(f), frame->varp-size, size); enqueue1(wbufp, (Obj){frame->varp - size, size, 0}); } else if(stackmap->n < 0) { // Locals size information, scan just the locals. size = -stackmap->n; if(Debug > 2) runtime·printf("frame %s conservative locals %p+%p\n", runtime·funcname(f), frame->varp-size, size); enqueue1(wbufp, (Obj){frame->varp - size, size, 0}); } else if(stackmap->n > 0) { // Locals bitmap information, scan just the pointers in // locals. if(pcdata < 0 || pcdata >= stackmap->n) { // don't know where we are runtime·printf("pcdata is %d and %d stack map entries for %s (targetpc=%p)\n", pcdata, stackmap->n, runtime·funcname(f), targetpc); runtime·throw("scanframe: bad symbol table"); } bv = runtime·stackmapdata(stackmap, pcdata); size = (bv.n * PtrSize) / BitsPerPointer; precise = true; scanbitvector(f, true, frame->varp - size, &bv, afterprologue, wbufp); } } // Scan arguments. // Use pointer information if known. stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps); if(stackmap != nil) { bv = runtime·stackmapdata(stackmap, pcdata); scanbitvector(f, precise, frame->argp, &bv, true, wbufp); } else { if(Debug > 2) runtime·printf("frame %s conservative args %p+%p\n", runtime·funcname(f), frame->argp, (uintptr)frame->arglen); enqueue1(wbufp, (Obj){frame->argp, frame->arglen, 0}); } return true; } static void addstackroots(G *gp, Workbuf **wbufp) { M *mp; int32 n; Stktop *stk; uintptr sp, guard; void *base; uintptr size; switch(gp->status){ default: runtime·printf("unexpected G.status %d (goroutine %p %D)\n", gp->status, gp, gp->goid); runtime·throw("mark - bad status"); case Gdead: return; case Grunning: runtime·throw("mark - world not stopped"); case Grunnable: case Gsyscall: case Gwaiting: break; } if(gp == g) runtime·throw("can't scan our own stack"); if((mp = gp->m) != nil && mp->helpgc) runtime·throw("can't scan gchelper stack"); if(gp->syscallstack != (uintptr)nil) { // Scanning another goroutine that is about to enter or might // have just exited a system call. It may be executing code such // as schedlock and may have needed to start a new stack segment. // Use the stack segment and stack pointer at the time of // the system call instead, since that won't change underfoot. sp = gp->syscallsp; stk = (Stktop*)gp->syscallstack; guard = gp->syscallguard; } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). sp = gp->sched.sp; stk = (Stktop*)gp->stackbase; guard = gp->stackguard; // For function about to start, context argument is a root too. if(gp->sched.ctxt != 0 && runtime·mlookup(gp->sched.ctxt, &base, &size, nil)) enqueue1(wbufp, (Obj){base, size, 0}); } if(ScanStackByFrames) { USED(sp); USED(stk); USED(guard); runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, scanframe, wbufp, false); } else { n = 0; while(stk) { if(sp < guard-StackGuard || (uintptr)stk < sp) { runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); runtime·throw("scanstack"); } if(Debug > 2) runtime·printf("conservative stack %p+%p\n", (byte*)sp, (uintptr)stk-sp); enqueue1(wbufp, (Obj){(byte*)sp, (uintptr)stk - sp, (uintptr)defaultProg | PRECISE | LOOP}); sp = stk->gobuf.sp; guard = stk->stackguard; stk = (Stktop*)stk->stackbase; n++; } } } void runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot) { FinBlock *block; Finalizer *f; runtime·lock(&finlock); if(finq == nil || finq->cnt == finq->cap) { if(finc == nil) { finc = runtime·persistentalloc(FinBlockSize, 0, &mstats.gc_sys); finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; finc->alllink = allfin; allfin = finc; } block = finc; finc = block->next; block->next = finq; finq = block; } f = &finq->fin[finq->cnt]; finq->cnt++; f->fn = fn; f->nret = nret; f->fint = fint; f->ot = ot; f->arg = p; runtime·fingwake = true; runtime·unlock(&finlock); } void runtime·iterate_finq(void (*callback)(FuncVal*, byte*, uintptr, Type*, PtrType*)) { FinBlock *fb; Finalizer *f; uintptr i; for(fb = allfin; fb; fb = fb->alllink) { for(i = 0; i < fb->cnt; i++) { f = &fb->fin[i]; callback(f->fn, f->arg, f->nret, f->fint, f->ot); } } } void runtime·MSpan_EnsureSwept(MSpan *s) { uint32 sg; // Caller must disable preemption. // Otherwise when this function returns the span can become unswept again // (if GC is triggered on another goroutine). if(m->locks == 0 && m->mallocing == 0 && g != m->g0) runtime·throw("MSpan_EnsureSwept: m is not locked"); sg = runtime·mheap.sweepgen; if(runtime·atomicload(&s->sweepgen) == sg) return; if(runtime·cas(&s->sweepgen, sg-2, sg-1)) { runtime·MSpan_Sweep(s); return; } // unfortunate condition, and we don't have efficient means to wait while(runtime·atomicload(&s->sweepgen) != sg) runtime·osyield(); } // Sweep frees or collects finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. // Returns true if the span was returned to heap. bool runtime·MSpan_Sweep(MSpan *s) { int32 cl, n, npages, nfree; uintptr size, off, *bitp, shift, bits; uint32 sweepgen; byte *p; MCache *c; byte *arena_start; MLink head, *end; byte *type_data; byte compression; uintptr type_data_inc; MLink *x; Special *special, **specialp, *y; bool res, sweepgenset; // It's critical that we enter this function with preemption disabled, // GC must not start while we are in the middle of this function. if(m->locks == 0 && m->mallocing == 0 && g != m->g0) runtime·throw("MSpan_Sweep: m is not locked"); sweepgen = runtime·mheap.sweepgen; if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", s->state, s->sweepgen, sweepgen); runtime·throw("MSpan_Sweep: bad span state"); } arena_start = runtime·mheap.arena_start; cl = s->sizeclass; size = s->elemsize; if(cl == 0) { n = 1; } else { // Chunk full of small blocks. npages = runtime·class_to_allocnpages[cl]; n = (npages << PageShift) / size; } res = false; nfree = 0; end = &head; c = m->mcache; sweepgenset = false; // mark any free objects in this span so we don't collect them for(x = s->freelist; x != nil; x = x->next) { // This is markonly(x) but faster because we don't need // atomic access and we're guaranteed to be pointing at // the head of a valid object. off = (uintptr*)x - (uintptr*)runtime·mheap.arena_start; bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *bitp |= bitMarked<specials; special = *specialp; while(special != nil) { // A finalizer can be set for an inner byte of an object, find object beginning. p = (byte*)(s->start << PageShift) + special->offset/size*size; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & (bitAllocated|bitMarked)) == bitAllocated) { // Find the exact byte for which the special was setup // (as opposed to object beginning). p = (byte*)(s->start << PageShift) + special->offset; // about to free object: splice out special record y = special; special = special->next; *specialp = special; if(!runtime·freespecial(y, p, size, false)) { // stop freeing of object if it has a finalizer *bitp |= bitMarked << shift; } } else { // object is still live: keep special record specialp = &special->next; special = *specialp; } } type_data = (byte*)s->types.data; type_data_inc = sizeof(uintptr); compression = s->types.compression; switch(compression) { case MTypes_Bytes: type_data += 8*sizeof(uintptr); type_data_inc = 1; break; } // Sweep through n objects of given size starting at p. // This thread owns the span now, so it can manipulate // the block bitmap without atomic operations. p = (byte*)(s->start << PageShift); for(; n > 0; n--, p += size, type_data+=type_data_inc) { off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & bitAllocated) == 0) continue; if((bits & bitMarked) != 0) { *bitp &= ~(bitMarked<needzero = 1; // important to set sweepgen before returning it to heap runtime·atomicstore(&s->sweepgen, sweepgen); sweepgenset = true; // See note about SysFault vs SysFree in malloc.goc. if(runtime·debug.efence) runtime·SysFault(p, size); else runtime·MHeap_Free(&runtime·mheap, s, 1); c->local_nlargefree++; c->local_largefree += size; runtime·xadd64(&mstats.next_gc, -(uint64)(size * (gcpercent + 100)/100)); res = true; } else { // Free small object. switch(compression) { case MTypes_Words: *(uintptr*)type_data = 0; break; case MTypes_Bytes: *(byte*)type_data = 0; break; } if(size > 2*sizeof(uintptr)) ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed" else if(size > sizeof(uintptr)) ((uintptr*)p)[1] = 0; end->next = (MLink*)p; end = (MLink*)p; nfree++; } } // We need to set s->sweepgen = h->sweepgen only when all blocks are swept, // because of the potential for a concurrent free/SetFinalizer. // But we need to set it before we make the span available for allocation // (return it to heap or mcentral), because allocation code assumes that a // span is already swept if available for allocation. if(!sweepgenset && nfree == 0) { // The span must be in our exclusive ownership until we update sweepgen, // check for potential races. if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", s->state, s->sweepgen, sweepgen); runtime·throw("MSpan_Sweep: bad span state after sweep"); } runtime·atomicstore(&s->sweepgen, sweepgen); } if(nfree > 0) { c->local_nsmallfree[cl] += nfree; c->local_cachealloc -= nfree * size; runtime·xadd64(&mstats.next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100)); res = runtime·MCentral_FreeSpan(&runtime·mheap.central[cl], s, nfree, head.next, end); //MCentral_FreeSpan updates sweepgen } return res; } // State of background sweep. // Pretected by gclock. static struct { G* g; bool parked; MSpan** spans; uint32 nspan; uint32 spanidx; } sweep; // background sweeping goroutine static void bgsweep(void) { g->issystem = 1; for(;;) { while(runtime·sweepone() != -1) { gcstats.nbgsweep++; runtime·gosched(); } runtime·lock(&gclock); if(!runtime·mheap.sweepdone) { // It's possible if GC has happened between sweepone has // returned -1 and gclock lock. runtime·unlock(&gclock); continue; } sweep.parked = true; runtime·parkunlock(&gclock, "GC sweep wait"); } } // sweeps one span // returns number of pages returned to heap, or -1 if there is nothing to sweep uintptr runtime·sweepone(void) { MSpan *s; uint32 idx, sg; uintptr npages; // increment locks to ensure that the goroutine is not preempted // in the middle of sweep thus leaving the span in an inconsistent state for next GC m->locks++; sg = runtime·mheap.sweepgen; for(;;) { idx = runtime·xadd(&sweep.spanidx, 1) - 1; if(idx >= sweep.nspan) { runtime·mheap.sweepdone = true; m->locks--; return -1; } s = sweep.spans[idx]; if(s->state != MSpanInUse) { s->sweepgen = sg; continue; } if(s->sweepgen != sg-2 || !runtime·cas(&s->sweepgen, sg-2, sg-1)) continue; if(s->incache) runtime·throw("sweep of incache span"); npages = s->npages; if(!runtime·MSpan_Sweep(s)) npages = 0; m->locks--; return npages; } } static void dumpspan(uint32 idx) { int32 sizeclass, n, npages, i, column; uintptr size; byte *p; byte *arena_start; MSpan *s; bool allocated; s = runtime·mheap.allspans[idx]; if(s->state != MSpanInUse) return; arena_start = runtime·mheap.arena_start; p = (byte*)(s->start << PageShift); sizeclass = s->sizeclass; size = s->elemsize; if(sizeclass == 0) { n = 1; } else { npages = runtime·class_to_allocnpages[sizeclass]; n = (npages << PageShift) / size; } runtime·printf("%p .. %p:\n", p, p+n*size); column = 0; for(; n>0; n--, p+=size) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; allocated = ((bits & bitAllocated) != 0); for(i=0; i= size) { runtime·printf(allocated ? ") " : "] "); } column++; if(column == 8) { runtime·printf("\n"); column = 0; } } } runtime·printf("\n"); } // A debugging function to dump the contents of memory void runtime·memorydump(void) { uint32 spanidx; for(spanidx=0; spanidxtraceback = 2; gchelperstart(); // parallel mark for over gc roots runtime·parfordo(work.markfor); // help other threads scan secondary blocks scanblock(nil, true); bufferList[m->helpgc].busy = 0; nproc = work.nproc; // work.nproc can change right after we increment work.ndone if(runtime·xadd(&work.ndone, +1) == nproc-1) runtime·notewakeup(&work.alldone); m->traceback = 0; } static void cachestats(void) { MCache *c; P *p, **pp; for(pp=runtime·allp; p=*pp; pp++) { c = p->mcache; if(c==nil) continue; runtime·purgecachedstats(c); } } static void flushallmcaches(void) { P *p, **pp; MCache *c; // Flush MCache's to MCentral. for(pp=runtime·allp; p=*pp; pp++) { c = p->mcache; if(c==nil) continue; runtime·MCache_ReleaseAll(c); } } void runtime·updatememstats(GCStats *stats) { M *mp; MSpan *s; int32 i; uint64 stacks_inuse, smallfree; uint64 *src, *dst; if(stats) runtime·memclr((byte*)stats, sizeof(*stats)); stacks_inuse = 0; for(mp=runtime·allm; mp; mp=mp->alllink) { stacks_inuse += mp->stackinuse*FixedStack; if(stats) { src = (uint64*)&mp->gcstats; dst = (uint64*)stats; for(i=0; igcstats, sizeof(mp->gcstats)); } } mstats.stacks_inuse = stacks_inuse; mstats.mcache_inuse = runtime·mheap.cachealloc.inuse; mstats.mspan_inuse = runtime·mheap.spanalloc.inuse; mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys + mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys; // Calculate memory allocator stats. // During program execution we only count number of frees and amount of freed memory. // Current number of alive object in the heap and amount of alive heap memory // are calculated by scanning all spans. // Total number of mallocs is calculated as number of frees plus number of alive objects. // Similarly, total amount of allocated memory is calculated as amount of freed memory // plus amount of alive heap memory. mstats.alloc = 0; mstats.total_alloc = 0; mstats.nmalloc = 0; mstats.nfree = 0; for(i = 0; i < nelem(mstats.by_size); i++) { mstats.by_size[i].nmalloc = 0; mstats.by_size[i].nfree = 0; } // Flush MCache's to MCentral. flushallmcaches(); // Aggregate local stats. cachestats(); // Scan all spans and count number of alive objects. for(i = 0; i < runtime·mheap.nspan; i++) { s = runtime·mheap.allspans[i]; if(s->state != MSpanInUse) continue; if(s->sizeclass == 0) { mstats.nmalloc++; mstats.alloc += s->elemsize; } else { mstats.nmalloc += s->ref; mstats.by_size[s->sizeclass].nmalloc += s->ref; mstats.alloc += s->ref*s->elemsize; } } // Aggregate by size class. smallfree = 0; mstats.nfree = runtime·mheap.nlargefree; for(i = 0; i < nelem(mstats.by_size); i++) { mstats.nfree += runtime·mheap.nsmallfree[i]; mstats.by_size[i].nfree = runtime·mheap.nsmallfree[i]; mstats.by_size[i].nmalloc += runtime·mheap.nsmallfree[i]; smallfree += runtime·mheap.nsmallfree[i] * runtime·class_to_size[i]; } mstats.nmalloc += mstats.nfree; // Calculate derived stats. mstats.total_alloc = mstats.alloc + runtime·mheap.largefree + smallfree; mstats.heap_alloc = mstats.alloc; mstats.heap_objects = mstats.nmalloc - mstats.nfree; } // Structure of arguments passed to function gc(). // This allows the arguments to be passed via runtime·mcall. struct gc_args { int64 start_time; // start time of GC in ns (just before stoptheworld) }; static void gc(struct gc_args *args); static void mgc(G *gp); static int32 readgogc(void) { byte *p; p = runtime·getenv("GOGC"); if(p == nil || p[0] == '\0') return 100; if(runtime·strcmp(p, (byte*)"off") == 0) return -1; return runtime·atoi(p); } void runtime·gc(int32 force) { struct gc_args a; int32 i; // The atomic operations are not atomic if the uint64s // are not aligned on uint64 boundaries. This has been // a problem in the past. if((((uintptr)&work.empty) & 7) != 0) runtime·throw("runtime: gc work buffer is misaligned"); if((((uintptr)&work.full) & 7) != 0) runtime·throw("runtime: gc work buffer is misaligned"); // The gc is turned off (via enablegc) until // the bootstrap has completed. // Also, malloc gets called in the guts // of a number of libraries that might be // holding locks. To avoid priority inversion // problems, don't bother trying to run gc // while holding a lock. The next mallocgc // without a lock will do the gc instead. if(!mstats.enablegc || g == m->g0 || m->locks > 0 || runtime·panicking) return; if(gcpercent == GcpercentUnknown) { // first time through runtime·lock(&runtime·mheap); if(gcpercent == GcpercentUnknown) gcpercent = readgogc(); runtime·unlock(&runtime·mheap); } if(gcpercent < 0) return; runtime·semacquire(&runtime·worldsema, false); if(!force && mstats.heap_alloc < mstats.next_gc) { // typically threads which lost the race to grab // worldsema exit here when gc is done. runtime·semrelease(&runtime·worldsema); return; } // Ok, we're doing it! Stop everybody else a.start_time = runtime·nanotime(); m->gcing = 1; runtime·stoptheworld(); clearpools(); // Run gc on the g0 stack. We do this so that the g stack // we're currently running on will no longer change. Cuts // the root set down a bit (g0 stacks are not scanned, and // we don't need to scan gc's internal state). Also an // enabler for copyable stacks. for(i = 0; i < (runtime·debug.gctrace > 1 ? 2 : 1); i++) { // switch to g0, call gc(&a), then switch back g->param = &a; g->status = Gwaiting; g->waitreason = "garbage collection"; runtime·mcall(mgc); // record a new start time in case we're going around again a.start_time = runtime·nanotime(); } // all done m->gcing = 0; m->locks++; runtime·semrelease(&runtime·worldsema); runtime·starttheworld(); m->locks--; // now that gc is done, kick off finalizer thread if needed if(!ConcurrentSweep) { // give the queued finalizers, if any, a chance to run runtime·gosched(); } } static void mgc(G *gp) { gc(gp->param); gp->param = nil; gp->status = Grunning; runtime·gogo(&gp->sched); } static void gc(struct gc_args *args) { int64 t0, t1, t2, t3, t4; uint64 heap0, heap1, obj, ninstr; GCStats stats; uint32 i; Eface eface; if(runtime·debug.allocfreetrace) runtime·tracegc(); m->traceback = 2; t0 = args->start_time; work.tstart = args->start_time; if(CollectStats) runtime·memclr((byte*)&gcstats, sizeof(gcstats)); m->locks++; // disable gc during mallocs in parforalloc if(work.markfor == nil) work.markfor = runtime·parforalloc(MaxGcproc); m->locks--; if(itabtype == nil) { // get C pointer to the Go type "itab" runtime·gc_itab_ptr(&eface); itabtype = ((PtrType*)eface.type)->elem; } t1 = runtime·nanotime(); // Sweep what is not sweeped by bgsweep. while(runtime·sweepone() != -1) gcstats.npausesweep++; work.nwait = 0; work.ndone = 0; work.nproc = runtime·gcprocs(); runtime·parforsetup(work.markfor, work.nproc, RootCount + runtime·allglen, nil, false, markroot); if(work.nproc > 1) { runtime·noteclear(&work.alldone); runtime·helpgc(work.nproc); } t2 = runtime·nanotime(); gchelperstart(); runtime·parfordo(work.markfor); scanblock(nil, true); t3 = runtime·nanotime(); bufferList[m->helpgc].busy = 0; if(work.nproc > 1) runtime·notesleep(&work.alldone); cachestats(); // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap // estimate what was live heap size after previous GC (for tracing only) heap0 = mstats.next_gc*100/(gcpercent+100); // conservatively set next_gc to high value assuming that everything is live // concurrent/lazy sweep will reduce this number while discovering new garbage mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; t4 = runtime·nanotime(); mstats.last_gc = t4; mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0; mstats.pause_total_ns += t4 - t0; mstats.numgc++; if(mstats.debuggc) runtime·printf("pause %D\n", t4-t0); if(runtime·debug.gctrace) { heap1 = mstats.heap_alloc; runtime·updatememstats(&stats); if(heap1 != mstats.heap_alloc) { runtime·printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc); runtime·throw("mstats skew"); } obj = mstats.nmalloc - mstats.nfree; stats.nprocyield += work.markfor->nprocyield; stats.nosyield += work.markfor->nosyield; stats.nsleep += work.markfor->nsleep; runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB, %D (%D-%D) objects," " %d/%d/%d sweeps," " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", mstats.numgc, work.nproc, (t3-t2)/1000000, (t2-t1)/1000000, (t1-t0+t4-t3)/1000000, heap0>>20, heap1>>20, obj, mstats.nmalloc, mstats.nfree, sweep.nspan, gcstats.nbgsweep, gcstats.npausesweep, stats.nhandoff, stats.nhandoffcnt, work.markfor->nsteal, work.markfor->nstealcnt, stats.nprocyield, stats.nosyield, stats.nsleep); gcstats.nbgsweep = gcstats.npausesweep = 0; if(CollectStats) { runtime·printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n", gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup); if(gcstats.ptr.cnt != 0) runtime·printf("avg ptrbufsize: %D (%D/%D)\n", gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt); if(gcstats.obj.cnt != 0) runtime·printf("avg nobj: %D (%D/%D)\n", gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt); runtime·printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes); runtime·printf("instruction counts:\n"); ninstr = 0; for(i=0; itraceback = 0; } extern uintptr runtime·sizeof_C_MStats; void runtime·ReadMemStats(MStats *stats) { // Have to acquire worldsema to stop the world, // because stoptheworld can only be used by // one goroutine at a time, and there might be // a pending garbage collection already calling it. runtime·semacquire(&runtime·worldsema, false); m->gcing = 1; runtime·stoptheworld(); runtime·updatememstats(nil); // Size of the trailing by_size array differs between Go and C, // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility. runtime·memcopy(runtime·sizeof_C_MStats, stats, &mstats); m->gcing = 0; m->locks++; runtime·semrelease(&runtime·worldsema); runtime·starttheworld(); m->locks--; } void runtime∕debug·readGCStats(Slice *pauses) { uint64 *p; uint32 i, n; // Calling code in runtime/debug should make the slice large enough. if(pauses->cap < nelem(mstats.pause_ns)+3) runtime·throw("runtime: short slice passed to readGCStats"); // Pass back: pauses, last gc (absolute time), number of gc, total pause ns. p = (uint64*)pauses->array; runtime·lock(&runtime·mheap); n = mstats.numgc; if(n > nelem(mstats.pause_ns)) n = nelem(mstats.pause_ns); // The pause buffer is circular. The most recent pause is at // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward // from there to go back farther in time. We deliver the times // most recent first (in p[0]). for(i=0; ilen = n+3; } int32 runtime·setgcpercent(int32 in) { int32 out; runtime·lock(&runtime·mheap); if(gcpercent == GcpercentUnknown) gcpercent = readgogc(); out = gcpercent; if(in < 0) in = -1; gcpercent = in; runtime·unlock(&runtime·mheap); return out; } static void gchelperstart(void) { if(m->helpgc < 0 || m->helpgc >= MaxGcproc) runtime·throw("gchelperstart: bad m->helpgc"); if(runtime·xchg(&bufferList[m->helpgc].busy, 1)) runtime·throw("gchelperstart: already busy"); if(g != m->g0) runtime·throw("gchelper not running on g0 stack"); } static void runfinq(void) { Finalizer *f; FinBlock *fb, *next; byte *frame; uint32 framesz, framecap, i; Eface *ef, ef1; // This function blocks for long periods of time, and because it is written in C // we have no liveness information. Zero everything so that uninitialized pointers // do not cause memory leaks. f = nil; fb = nil; next = nil; frame = nil; framecap = 0; framesz = 0; i = 0; ef = nil; ef1.type = nil; ef1.data = nil; // force flush to memory USED(&f); USED(&fb); USED(&next); USED(&framesz); USED(&i); USED(&ef); USED(&ef1); for(;;) { runtime·lock(&finlock); fb = finq; finq = nil; if(fb == nil) { runtime·fingwait = true; runtime·parkunlock(&finlock, "finalizer wait"); continue; } runtime·unlock(&finlock); if(raceenabled) runtime·racefingo(); for(; fb; fb=next) { next = fb->next; for(i=0; icnt; i++) { f = &fb->fin[i]; framesz = sizeof(Eface) + f->nret; if(framecap < framesz) { runtime·free(frame); // The frame does not contain pointers interesting for GC, // all not yet finalized objects are stored in finq. // If we do not mark it as FlagNoScan, // the last finalized object is not collected. frame = runtime·mallocgc(framesz, 0, FlagNoScan|FlagNoInvokeGC); framecap = framesz; } if(f->fint == nil) runtime·throw("missing type in runfinq"); if(f->fint->kind == KindPtr) { // direct use of pointer *(void**)frame = f->arg; } else if(((InterfaceType*)f->fint)->mhdr.len == 0) { // convert to empty interface ef = (Eface*)frame; ef->type = f->ot; ef->data = f->arg; } else { // convert to interface with methods, via empty interface. ef1.type = f->ot; ef1.data = f->arg; if(!runtime·ifaceE2I2((InterfaceType*)f->fint, ef1, (Iface*)frame)) runtime·throw("invalid type conversion in runfinq"); } reflect·call(f->fn, frame, framesz, framesz); f->fn = nil; f->arg = nil; f->ot = nil; } fb->cnt = 0; runtime·lock(&finlock); fb->next = finc; finc = fb; runtime·unlock(&finlock); } // Zero everything that's dead, to avoid memory leaks. // See comment at top of function. f = nil; fb = nil; next = nil; i = 0; ef = nil; ef1.type = nil; ef1.data = nil; runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible } } void runtime·createfing(void) { if(fing != nil) return; // Here we use gclock instead of finlock, // because newproc1 can allocate, which can cause on-demand span sweep, // which can queue finalizers, which would deadlock. runtime·lock(&gclock); if(fing == nil) fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc); runtime·unlock(&gclock); } G* runtime·wakefing(void) { G *res; res = nil; runtime·lock(&finlock); if(runtime·fingwait && runtime·fingwake) { runtime·fingwait = false; runtime·fingwake = false; res = fing; } runtime·unlock(&finlock); return res; } void runtime·marknogc(void *v) { uintptr *b, off, shift; off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitAllocated< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markfreed: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) return; // not allocated, so okay off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; if((bits & bitAllocated) != 0) { runtime·printf("checkfreed %p+%p: off=%p have=%p\n", v, n, off, bits & bitMask); runtime·throw("checkfreed: not freed"); } } // mark the span of memory at v as having n blocks of the given size. // if leftover is true, there is left over space at the end of the span. void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) { uintptr *b, off, shift, i; byte *p; if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markspan: bad pointer"); if(runtime·checking) { // bits should be all zero at the start off = (byte*)v + size - runtime·mheap.arena_start; b = (uintptr*)(runtime·mheap.arena_start - off/wordsPerBitmapWord); for(i = 0; i < size/PtrSize/wordsPerBitmapWord; i++) { if(b[i] != 0) runtime·throw("markspan: span bits not zero"); } } p = v; if(leftover) // mark a boundary just past end of last block too n++; for(; n-- > 0; p += size) { // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markspan: bad pointer"); p = v; off = p - (uintptr*)runtime·mheap.arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime·throw("markspan: unaligned pointer"); b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime·throw("unmarkspan: unaligned length"); // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. n /= wordsPerBitmapWord; while(n-- > 0) *b-- = 0; } void runtime·MHeap_MapBits(MHeap *h) { // Caller has added extra mappings to the arena. // Add extra mappings of bitmap words as needed. // We allocate extra bitmap pieces in chunks of bitmapChunk. enum { bitmapChunk = 8192 }; uintptr n; n = (h->arena_used - h->arena_start) / wordsPerBitmapWord; n = ROUND(n, bitmapChunk); n = ROUND(n, PhysPageSize); if(h->bitmap_mapped >= n) return; runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats.gc_sys); h->bitmap_mapped = n; }