package ssa // This package defines a high-level intermediate representation for // Go programs using static single-assignment (SSA) form. import ( "fmt" "go/ast" "go/token" "sync" "code.google.com/p/go.tools/go/exact" "code.google.com/p/go.tools/go/types" ) // A Program is a partial or complete Go program converted to SSA form. // Each Builder creates and populates a single Program during its // lifetime. // type Program struct { Files *token.FileSet // position information for the files of this Program Packages map[string]*Package // all loaded Packages, keyed by import path Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects. methodSets map[types.Type]MethodSet // concrete method sets for all needed types [TODO(adonovan): de-dup] methodSetsMu sync.Mutex // serializes all accesses to methodSets concreteMethods map[*types.Func]*Function // maps named concrete methods to their code mode BuilderMode // set of mode bits } // A Package is a single analyzed Go package containing Members for // all package-level functions, variables, constants and types it // declares. These may be accessed directly via Members, or via the // type-specific accessor methods Func, Type, Var and Const. // type Package struct { Prog *Program // the owning program Types *types.Package // the type checker's package object for this package. Members map[string]Member // all exported and unexported members of the package Init *Function // the package's (concatenated) init function // These fields are available between package creation and SSA // building, but are then cleared unless Context.RetainAST(pkg). Files []*ast.File // abstract syntax for the package's files *TypeInfo // type-checker intermediate results // The following fields are set transiently during building, // then cleared. started int32 // atomically tested and set at start of build phase nTo1Vars map[*ast.ValueSpec]bool // set of n:1 ValueSpecs already built } // A Member is a member of a Go package, implemented by *Constant, // *Global, *Function, or *Type; they are created by package-level // const, var, func and type declarations respectively. // type Member interface { Name() string // the declared name of the package member String() string // human-readable information about the value Pos() token.Pos // position of member's declaration, if known Type() types.Type // the type of the package member ImplementsMember() // dummy method to indicate the "implements" relation. } // An Id identifies the name of a field of a struct type, or the name // of a method of an interface or a named type. // // For exported names, i.e. those beginning with a Unicode upper-case // letter, a simple string is unambiguous. // // However, a method set or struct may contain multiple unexported // names with identical spelling that are logically distinct because // they originate in different packages. Unexported names must // therefore be disambiguated by their package too. // // The Pkg field of an Id is therefore nil iff the name is exported. // // This type is suitable for use as a map key because the equivalence // relation == is consistent with identifier equality. type Id struct { Pkg *types.Package Name string } // A MethodSet contains all the methods for a particular type. // The method sets for T and *T are distinct entities. // The methods for a non-pointer type T all have receiver type T, but // the methods for pointer type *T may have receiver type *T or T. // type MethodSet map[Id]*Function // A Type is a Member of a Package representing the name, underlying // type and method set of a named type declared at package scope. // type Type struct { NamedType *types.Named Methods MethodSet // concrete method set of N PtrMethods MethodSet // concrete method set of (*N) } // A Constant is a Member of Package representing a package-level // constant value. // // Pos() returns the position of the declaring ast.ValueSpec.Names[*] // identifier. // // NB: a Constant is not a Value; it contains a literal Value, which // it augments with the name and position of its 'const' declaration. // type Constant struct { Name_ string Value *Literal pos token.Pos } // An SSA value that can be referenced by an instruction. type Value interface { // Name returns the name of this value, and determines how // this Value appears when used as an operand of an // Instruction. // // This is the same as the source name for Parameters, // Builtins, Functions, Captures, Globals and some Allocs. // For literals, it is a representation of the literal's value // and type. For all other Values this is the name of the // virtual register defined by the instruction. // // The name of an SSA Value is not semantically significant, // and may not even be unique within a function. Name() string // If this value is an Instruction, String returns its // disassembled form; otherwise it returns unspecified // human-readable information about the Value, such as its // kind, name and type. String() string // Type returns the type of this value. Many instructions // (e.g. IndexAddr) change the behaviour depending on the // types of their operands. Type() types.Type // Referrers returns the list of instructions that have this // value as one of their operands; it may contain duplicates // if an instruction has a repeated operand. // // Referrers actually returns a pointer through which the // caller may perform mutations to the object's state. // // Referrers is currently only defined for the function-local // values Capture, Parameter and all value-defining instructions. // It returns nil for Function, Builtin, Literal and Global. // // Instruction.Operands contains the inverse of this relation. Referrers() *[]Instruction // Dummy method to indicate the "implements" relation. ImplementsValue() } // An Instruction is an SSA instruction that computes a new Value or // has some effect. // // An Instruction that defines a value (e.g. BinOp) also implements // the Value interface; an Instruction that only has an effect (e.g. Store) // does not. // type Instruction interface { // String returns the disassembled form of this value. e.g. // // Examples of Instructions that define a Value: // e.g. "x + y" (BinOp) // "len([])" (Call) // Note that the name of the Value is not printed. // // Examples of Instructions that do define (are) Values: // e.g. "ret x" (Ret) // "*y = x" (Store) // // (This separation is useful for some analyses which // distinguish the operation from the value it // defines. e.g. 'y = local int' is both an allocation of // memory 'local int' and a definition of a pointer y.) String() string // Block returns the basic block to which this instruction // belongs. Block() *BasicBlock // SetBlock sets the basic block to which this instruction // belongs. SetBlock(*BasicBlock) // Operands returns the operands of this instruction: the // set of Values it references. // // Specifically, it appends their addresses to rands, a // user-provided slice, and returns the resulting slice, // permitting avoidance of memory allocation. // // The operands are appended in undefined order; the addresses // are always non-nil but may point to a nil Value. Clients // may store through the pointers, e.g. to effect a value // renaming. // // Value.Referrers is a subset of the inverse of this // relation. (Referrers are not tracked for all types of // Values.) Operands(rands []*Value) []*Value // Pos returns the location of the source construct that // gave rise to this instruction, or token.NoPos if it was not // explicit in the source. // // For each ast.Expr type, a particular field is designated as // the canonical location for the expression, e.g. the Lparen // for an *ast.CallExpr. This enables us to find the // instruction corresponding to a given piece of source // syntax. // Pos() token.Pos // Dummy method to indicate the "implements" relation. ImplementsInstruction() } // Function represents the parameters, results and code of a function // or method. // // If Blocks is nil, this indicates an external function for which no // Go source code is available. In this case, Captures and Locals // will be nil too. Clients performing whole-program analysis must // handle external functions specially. // // Functions are immutable values; they do not have addresses. // // Blocks[0] is the function entry point; block order is not otherwise // semantically significant, though it may affect the readability of // the disassembly. // // A nested function that refers to one or more lexically enclosing // local variables ("free variables") has Capture parameters. Such // functions cannot be called directly but require a value created by // MakeClosure which, via its Bindings, supplies values for these // parameters. // // If the function is a method (Signature.Recv() != nil) then the first // element of Params is the receiver parameter. // // Pos() returns the declaring ast.FuncLit.Type.Func or the position // of the ast.FuncDecl.Name, if the function was explicit in the // source. // // Type() returns the function's Signature. // type Function struct { Name_ string Signature *types.Signature pos token.Pos Enclosing *Function // enclosing function if anon; nil if global Pkg *Package // enclosing package for Go source functions; otherwise nil Prog *Program // enclosing program Params []*Parameter // function parameters; for methods, includes receiver FreeVars []*Capture // free variables whose values must be supplied by closure Locals []*Alloc Blocks []*BasicBlock // basic blocks of the function; nil => external AnonFuncs []*Function // anonymous functions directly beneath this one // The following fields are set transiently during building, // then cleared. currentBlock *BasicBlock // where to emit code objects map[types.Object]Value // addresses of local variables namedResults []*Alloc // tuple of named results syntax *funcSyntax // abstract syntax trees for Go source functions targets *targets // linked stack of branch targets lblocks map[*ast.Object]*lblock // labelled blocks } // An SSA basic block. // // The final element of Instrs is always an explicit transfer of // control (If, Jump, Ret or Panic). // // A block may contain no Instructions only if it is unreachable, // i.e. Preds is nil. Empty blocks are typically pruned. // // BasicBlocks and their Preds/Succs relation form a (possibly cyclic) // graph independent of the SSA Value graph. It is illegal for // multiple edges to exist between the same pair of blocks. // // The order of Preds and Succs are significant (to Phi and If // instructions, respectively). // type BasicBlock struct { Index int // index of this block within Func.Blocks Comment string // optional label; no semantic significance Func *Function // containing function Instrs []Instruction // instructions in order Preds, Succs []*BasicBlock // predecessors and successors succs2 [2]*BasicBlock // initial space for Succs. dom *domNode // node in dominator tree; optional. gaps int // number of nil Instrs (transient). rundefers int // number of rundefers (transient) } // Pure values ---------------------------------------- // A Capture represents a free variable of the function to which it // belongs. // // Captures are used to implement anonymous functions, whose free // variables are lexically captured in a closure formed by // MakeClosure. The referent of such a capture is an Alloc or another // Capture and is considered a potentially escaping heap address, with // pointer type. // // Captures are also used to implement bound method closures. Such a // capture represents the receiver value and may be of any type that // has concrete methods. // type Capture struct { Name_ string Type_ types.Type referrers []Instruction // Transiently needed during building. outer Value // the Value captured from the enclosing context. } // A Parameter represents an input parameter of a function. // type Parameter struct { Name_ string Type_ types.Type referrers []Instruction } // A Literal represents the value of a constant expression. // // It may have a nil, boolean, string or numeric (integer, fraction or // complex) value, or a []byte or []rune conversion of a string // literal. // // Literals may be of named types. A literal's underlying type can be // a basic type, possibly one of the "untyped" types, or a slice type // whose elements' underlying type is byte or rune. A nil literal can // have any reference type: interface, map, channel, pointer, slice, // or function---but not "untyped nil". // // All source-level constant expressions are represented by a Literal // of equal type and value. // // Value holds the exact value of the literal, independent of its // Type(), using the same representation as package go/exact uses for // constants. // // Example printed form: // 42:int // "hello":untyped string // 3+4i:MyComplex // type Literal struct { Type_ types.Type Value exact.Value } // A Global is a named Value holding the address of a package-level // variable. // // Pos() returns the position of the ast.ValueSpec.Names[*] // identifier. // type Global struct { Name_ string Type_ types.Type Pkg *Package pos token.Pos // The following fields are set transiently during building, // then cleared. spec *ast.ValueSpec // explained at buildGlobal } // A Builtin represents a built-in function, e.g. len. // // Builtins are immutable values. Builtins do not have addresses. // // Type() returns a *types.Builtin. // Built-in functions may have polymorphic or variadic types that are // not expressible in Go's type system. // type Builtin struct { Object *types.Func // canonical types.Universe object for this built-in } // Value-defining instructions ---------------------------------------- // The Alloc instruction reserves space for a value of the given type, // zero-initializes it, and yields its address. // // Alloc values are always addresses, and have pointer types, so the // type of the allocated space is actually indirect(Type()). // // If Heap is false, Alloc allocates space in the function's // activation record (frame); we refer to an Alloc(Heap=false) as a // "local" alloc. Each local Alloc returns the same address each time // it is executed within the same activation; the space is // re-initialized to zero. // // If Heap is true, Alloc allocates space in the heap, and returns; we // refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc // returns a different address each time it is executed. // // When Alloc is applied to a channel, map or slice type, it returns // the address of an uninitialized (nil) reference of that kind; store // the result of MakeSlice, MakeMap or MakeChan in that location to // instantiate these types. // // Pos() returns the ast.CompositeLit.Lbrace for a composite literal, // or the ast.CallExpr.Lparen for a call to new() or for a call that // allocates a varargs slice. // // Example printed form: // t0 = local int // t1 = new int // type Alloc struct { anInstruction Name_ string Type_ types.Type Heap bool pos token.Pos referrers []Instruction index int // dense numbering; for lifting } // The Phi instruction represents an SSA φ-node, which combines values // that differ across incoming control-flow edges and yields a new // value. Within a block, all φ-nodes must appear before all non-φ // nodes. // // Pos() returns NoPos. // // Example printed form: // t2 = phi [0.start: t0, 1.if.then: t1, ...] // type Phi struct { Register Comment string // a hint as to its purpose Edges []Value // Edges[i] is value for Block().Preds[i] } // The Call instruction represents a function or method call. // // The Call instruction yields the function result, if there is // exactly one, or a tuple (empty or len>1) whose components are // accessed via Extract. // // See CallCommon for generic function call documentation. // // Pos() returns the ast.CallExpr.Lparen, if explicit in the source. // // Example printed form: // t2 = println(t0, t1) // t4 = t3() // t7 = invoke t5.Println(...t6) // type Call struct { Register Call CallCommon } // The BinOp instruction yields the result of binary operation X Op Y. // // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source. // TODO(adonovan): implement. // // Example printed form: // t1 = t0 + 1:int // type BinOp struct { Register // One of: // ADD SUB MUL QUO REM + - * / % // AND OR XOR SHL SHR AND_NOT & | ^ << >> &~ // EQL LSS GTR NEQ LEQ GEQ == != < <= < >= Op token.Token X, Y Value } // The UnOp instruction yields the result of Op X. // ARROW is channel receive. // MUL is pointer indirection (load). // XOR is bitwise complement. // SUB is negation. // // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above // and a boolean indicating the success of the receive. The // components of the tuple are accessed using Extract. // // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source. // // Example printed form: // t0 = *x // t2 = <-t1,ok // type UnOp struct { Register Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^ X Value CommaOk bool } // The ChangeType instruction applies to X a value-preserving type // change to Type(). // // Type changes are permitted: // - between a named type and its underlying type. // - between two named types of the same underlying type. // - between (possibly named) pointers to identical base types. // - between f(T) functions and (T) func f() methods. // - from a bidirectional channel to a read- or write-channel, // optionally adding/removing a name. // // This operation cannot fail dynamically. // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t1 = changetype *int <- IntPtr (t0) // type ChangeType struct { Register X Value } // The Convert instruction yields the conversion of value X to type // Type(). // // A conversion may change the value and representation of its operand. // Conversions are permitted: // - between real numeric types. // - between complex numeric types. // - between string and []byte or []rune. // - from (Unicode) integer to (UTF-8) string. // A conversion may imply a type name change also. // // This operation cannot fail dynamically. // // Conversions of untyped string/number/bool constants to a specific // representation are eliminated during SSA construction. // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t1 = convert []byte <- string (t0) // type Convert struct { Register X Value } // ChangeInterface constructs a value of one interface type from a // value of another interface type known to be assignable to it. // // This operation cannot fail. Use TypeAssert for interface // conversions that may fail dynamically. // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t1 = change interface interface{} <- I (t0) // type ChangeInterface struct { Register X Value } // MakeInterface constructs an instance of an interface type from a // value and its method-set. // // To construct the zero value of an interface type T, use: // &Literal{exact.MakeNil(), T} // // Pos() returns the ast.CallExpr.Lparen, if the instruction arose // from an explicit conversion in the source. // // Example printed form: // t1 = make interface interface{} <- int (42:int) // type MakeInterface struct { Register X Value Methods MethodSet // method set of (non-interface) X } // The MakeClosure instruction yields a closure value whose code is // Fn and whose free variables' values are supplied by Bindings. // // Type() returns a (possibly named) *types.Signature. // // Pos() returns the ast.FuncLit.Type.Func for a function literal // closure or the ast.SelectorExpr.Sel for a bound method closure. // // Example printed form: // t0 = make closure anon@1.2 [x y z] // t1 = make closure bound$(main.I).add [i] // type MakeClosure struct { Register Fn Value // always a *Function Bindings []Value // values for each free variable in Fn.FreeVars } // The MakeMap instruction creates a new hash-table-based map object // and yields a value of kind map. // // Type() returns a (possibly named) *types.Map. // // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or // the ast.CompositeLit.Lbrack if created by a literal. // // Example printed form: // t1 = make map[string]int t0 // type MakeMap struct { Register Reserve Value // initial space reservation; nil => default } // The MakeChan instruction creates a new channel object and yields a // value of kind chan. // // Type() returns a (possibly named) *types.Chan. // // Pos() returns the ast.CallExpr.Lparen for the make(chan) that // created it. // // Example printed form: // t0 = make chan int 0 // type MakeChan struct { Register Size Value // int; size of buffer; zero => synchronous. } // The MakeSlice instruction yields a slice of length Len backed by a // newly allocated array of length Cap. // // Both Len and Cap must be non-nil Values of integer type. // // (Alloc(types.Array) followed by Slice will not suffice because // Alloc can only create arrays of statically known length.) // // Type() returns a (possibly named) *types.Slice. // // Pos() returns the ast.CallExpr.Lparen for the make([]T) that // created it. // // Example printed form: // t1 = make slice []string 1:int t0 // type MakeSlice struct { Register Len Value Cap Value } // The Slice instruction yields a slice of an existing string, slice // or *array X between optional integer bounds Low and High. // // Type() returns string if the type of X was string, otherwise a // *types.Slice with the same element type as X. // // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice // operation, the ast.CompositeLit.Lbrace if created by a literal, or // NoPos if not explicit in the source (e.g. a variadic argument slice). // // Example printed form: // t1 = slice t0[1:] // type Slice struct { Register X Value // slice, string, or *array Low, High Value // either may be nil } // The FieldAddr instruction yields the address of Field of *struct X. // // The field is identified by its index within the field list of the // struct type of X. // // Type() returns a (possibly named) *types.Pointer. // // Pos() returns the position of the ast.SelectorExpr.Sel for the // field, if explicit in the source. // // Example printed form: // t1 = &t0.name [#1] // type FieldAddr struct { Register X Value // *struct Field int // index into X.Type().(*types.Struct).Fields } // The Field instruction yields the Field of struct X. // // The field is identified by its index within the field list of the // struct type of X; by using numeric indices we avoid ambiguity of // package-local identifiers and permit compact representations. // // Pos() returns the position of the ast.SelectorExpr.Sel for the // field, if explicit in the source. // // Example printed form: // t1 = t0.name [#1] // type Field struct { Register X Value // struct Field int // index into X.Type().(*types.Struct).Fields } // The IndexAddr instruction yields the address of the element at // index Index of collection X. Index is an integer expression. // // The elements of maps and strings are not addressable; use Lookup or // MapUpdate instead. // // Type() returns a (possibly named) *types.Pointer. // // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if // explicit in the source. // // Example printed form: // t2 = &t0[t1] // type IndexAddr struct { Register X Value // slice or *array, Index Value // numeric index } // The Index instruction yields element Index of array X. // // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if // explicit in the source. // // Example printed form: // t2 = t0[t1] // type Index struct { Register X Value // array Index Value // integer index } // The Lookup instruction yields element Index of collection X, a map // or string. Index is an integer expression if X is a string or the // appropriate key type if X is a map. // // If CommaOk, the result is a 2-tuple of the value above and a // boolean indicating the result of a map membership test for the key. // The components of the tuple are accessed using Extract. // // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. // // Example printed form: // t2 = t0[t1] // t5 = t3[t4],ok // type Lookup struct { Register X Value // string or map Index Value // numeric or key-typed index CommaOk bool // return a value,ok pair } // SelectState is a helper for Select. // It represents one goal state and its corresponding communication. // type SelectState struct { Dir ast.ChanDir // direction of case Chan Value // channel to use (for send or receive) Send Value // value to send (for send) } // The Select instruction tests whether (or blocks until) one or more // of the specified sent or received states is entered. // // It returns a triple (index int, recv interface{}, recvOk bool) // whose components, described below, must be accessed via the Extract // instruction. // // If Blocking, select waits until exactly one state holds, i.e. a // channel becomes ready for the designated operation of sending or // receiving; select chooses one among the ready states // pseudorandomly, performs the send or receive operation, and sets // 'index' to the index of the chosen channel. // // If !Blocking, select doesn't block if no states hold; instead it // returns immediately with index equal to -1. // // If the chosen channel was used for a receive, 'recv' is set to the // received value; otherwise it is nil. // // The third component of the triple, recvOk, is a boolean whose value // is true iff the selected operation was a receive and the receive // successfully yielded a value. // // Pos() returns the ast.SelectStmt.Select. // // Example printed form: // t3 = select nonblocking [<-t0, t1<-t2, ...] // t4 = select blocking [] // type Select struct { Register States []SelectState Blocking bool } // The Range instruction yields an iterator over the domain and range // of X, which must be a string or map. // // Elements are accessed via Next. // // Type() returns a (possibly named) *types.Result (tuple type). // // Pos() returns the ast.RangeStmt.For. // // Example printed form: // t0 = range "hello":string // type Range struct { Register X Value // string or map } // The Next instruction reads and advances the (map or string) // iterator Iter and returns a 3-tuple value (ok, k, v). If the // iterator is not exhausted, ok is true and k and v are the next // elements of the domain and range, respectively. Otherwise ok is // false and k and v are undefined. // // Components of the tuple are accessed using Extract. // // The IsString field distinguishes iterators over strings from those // over maps, as the Type() alone is insufficient: consider // map[int]rune. // // Type() returns a *types.Result (tuple type) for the triple // (ok, k, v). The types of k and/or v may be types.Invalid. // // Example printed form: // t1 = next t0 // type Next struct { Register Iter Value IsString bool // true => string iterator; false => map iterator. } // The TypeAssert instruction tests whether interface value X has type // AssertedType. // // If !CommaOk, on success it returns v, the result of the conversion // (defined below); on failure it panics. // // If CommaOk: on success it returns a pair (v, true) where v is the // result of the conversion; on failure it returns (z, false) where z // is AssertedType's zero value. The components of the pair must be // accessed using the Extract instruction. // // If AssertedType is a concrete type, TypeAssert checks whether the // dynamic type in interface X is equal to it, and if so, the result // of the conversion is a copy of the value in the interface. // // If AssertedType is an interface, TypeAssert checks whether the // dynamic type of the interface is assignable to it, and if so, the // result of the conversion is a copy of the interface value X. // If AssertedType is a superinterface of X.Type(), the operation // cannot fail; ChangeInterface is preferred in this case. // // Type() reflects the actual type of the result, possibly a pair // (types.Result); AssertedType is the asserted type. // // Example printed form: // t1 = typeassert t0.(int) // t3 = typeassert,ok t2.(T) // type TypeAssert struct { Register X Value AssertedType types.Type CommaOk bool } // The Extract instruction yields component Index of Tuple. // // This is used to access the results of instructions with multiple // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and // IndexExpr(Map). // // Example printed form: // t1 = extract t0 #1 // type Extract struct { Register Tuple Value Index int } // Instructions executed for effect. They do not yield a value. -------------------- // The Jump instruction transfers control to the sole successor of its // owning block. // // A Jump must be the last instruction of its containing BasicBlock. // // Pos() returns NoPos. // // Example printed form: // jump done // type Jump struct { anInstruction } // The If instruction transfers control to one of the two successors // of its owning block, depending on the boolean Cond: the first if // true, the second if false. // // An If instruction must be the last instruction of its containing // BasicBlock. // // Pos() returns NoPos. // // Example printed form: // if t0 goto done else body // type If struct { anInstruction Cond Value } // The Ret instruction returns values and control back to the calling // function. // // len(Results) is always equal to the number of results in the // function's signature. // // If len(Results) > 1, Ret returns a tuple value with the specified // components which the caller must access using Extract instructions. // // There is no instruction to return a ready-made tuple like those // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or // a tail-call to a function with multiple result parameters. // // Ret must be the last instruction of its containing BasicBlock. // Such a block has no successors. // // Pos() returns the ast.ReturnStmt.Return, if explicit in the source. // // Example printed form: // ret // ret nil:I, 2:int // type Ret struct { anInstruction Results []Value pos token.Pos } // The RunDefers instruction pops and invokes the entire stack of // procedure calls pushed by Defer instructions in this function. // // It is legal to encounter multiple 'rundefers' instructions in a // single control-flow path through a function; this is useful in // the combined init() function, for example. // // Pos() returns NoPos. // // Example printed form: // rundefers // type RunDefers struct { anInstruction } // The Panic instruction initiates a panic with value X. // // A Panic instruction must be the last instruction of its containing // BasicBlock, which must have no successors. // // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; // they are treated as calls to a built-in function. // // Pos() returns the ast.CallExpr.Lparen if this panic was explicit // in the source. // // Example printed form: // panic t0 // type Panic struct { anInstruction X Value // an interface{} pos token.Pos } // The Go instruction creates a new goroutine and calls the specified // function within it. // // See CallCommon for generic function call documentation. // // Example printed form: // go println(t0, t1) // go t3() // go invoke t5.Println(...t6) // type Go struct { anInstruction Call CallCommon } // The Defer instruction pushes the specified call onto a stack of // functions to be called by a RunDefers instruction or by a panic. // // See CallCommon for generic function call documentation. // // Example printed form: // defer println(t0, t1) // defer t3() // defer invoke t5.Println(...t6) // type Defer struct { anInstruction Call CallCommon } // The Send instruction sends X on channel Chan. // // Pos() returns the ast.SendStmt.Arrow, if explicit in the source. // // Example printed form: // send t0 <- t1 // type Send struct { anInstruction Chan, X Value pos token.Pos } // The Store instruction stores Val at address Addr. // Stores can be of arbitrary types. // // Pos() returns the ast.StarExpr.Star, if explicit in the source. // TODO(addr): implement. // // Example printed form: // *x = y // type Store struct { anInstruction Addr Value Val Value pos token.Pos } // The MapUpdate instruction updates the association of Map[Key] to // Value. // // Pos() returns the ast.KeyValueExpr.Colon, if explicit in the source. // // Example printed form: // t0[t1] = t2 // type MapUpdate struct { anInstruction Map Value Key Value Value Value pos token.Pos } // Embeddable mix-ins and helpers for common parts of other structs. ----------- // Register is a mix-in embedded by all SSA values that are also // instructions, i.e. virtual registers, and provides implementations // of the Value interface's Name() and Type() methods: the name is // simply a numbered register (e.g. "t0") and the type is the Type_ // field. // // Temporary names are automatically assigned to each Register on // completion of building a function in SSA form. // // Clients must not assume that the 'id' value (and the Name() derived // from it) is unique within a function. As always in this API, // semantics are determined only by identity; names exist only to // facilitate debugging. // type Register struct { anInstruction num int // "name" of virtual register, e.g. "t0". Not guaranteed unique. pos token.Pos // position of source expression, or NoPos Type_ types.Type // type of virtual register referrers []Instruction } // anInstruction is a mix-in embedded by all Instructions. // It provides the implementations of the Block and SetBlock methods. type anInstruction struct { Block_ *BasicBlock // the basic block of this instruction } // CallCommon is contained by Go, Defer and Call to hold the // common parts of a function or method call. // // Each CallCommon exists in one of two modes, function call and // interface method invocation, or "call" and "invoke" for short. // // 1. "call" mode: when Recv is nil (!IsInvoke), a CallCommon // represents an ordinary function call of the value in Func. // // In the common case in which Func is a *Function, this indicates a // statically dispatched call to a package-level function, an // anonymous function, or a method of a named type. Also statically // dispatched, but less common, Func may be a *MakeClosure, indicating // an immediately applied function literal with free variables. Any // other Value of Func indicates a dynamically dispatched function // call. The StaticCallee method returns the callee in these cases. // // Args contains the arguments to the call. If Func is a method, // Args[0] contains the receiver parameter. Recv and Method are not // used in this mode. // // Example printed form: // t2 = println(t0, t1) // go t3() // defer t5(...t6) // // 2. "invoke" mode: when Recv is non-nil (IsInvoke), a CallCommon // represents a dynamically dispatched call to an interface method. // In this mode, Recv is the interface value and Method is the index // of the method within the interface type of the receiver. // // Recv is implicitly supplied to the concrete method implementation // as the receiver parameter; in other words, Args[0] holds not the // receiver but the first true argument. Func is not used in this // mode. // // If the called method's receiver has non-pointer type T, but the // receiver supplied by the interface value has type *T, an implicit // load (copy) operation is performed. // // Example printed form: // t1 = invoke t0.String() // go invoke t3.Run(t2) // defer invoke t4.Handle(...t5) // // In both modes, HasEllipsis is true iff the last element of Args is // a slice value containing zero or more arguments to a variadic // function. (This is not semantically significant since the type of // the called function is sufficient to determine this, but it aids // readability of the printed form.) // type CallCommon struct { Recv Value // receiver, iff interface method invocation Method int // index of interface method; call MethodId() for its Id Func Value // target of call, iff function call Args []Value // actual parameters, including receiver in invoke mode HasEllipsis bool // true iff last Args is a slice of '...' args (needed?) pos token.Pos // position of CallExpr.Lparen, iff explicit in source } // IsInvoke returns true if this call has "invoke" (not "call") mode. func (c *CallCommon) IsInvoke() bool { return c.Recv != nil } func (c *CallCommon) Pos() token.Pos { return c.pos } // StaticCallee returns the called function if this is a trivially // static "call"-mode call. func (c *CallCommon) StaticCallee() *Function { switch fn := c.Func.(type) { case *Function: return fn case *MakeClosure: return fn.Fn.(*Function) } return nil } // MethodId returns the Id for the method called by c, which must // have "invoke" mode. func (c *CallCommon) MethodId() Id { m := c.Recv.Type().Underlying().(*types.Interface).Method(c.Method) return MakeId(m.Name(), m.Pkg()) } // Description returns a description of the mode of this call suitable // for a user interface, e.g. "static method call". func (c *CallCommon) Description() string { switch fn := c.Func.(type) { case nil: return "dynamic method call" // ("invoke" mode) case *MakeClosure: return "static function closure call" case *Function: if fn.Signature.Recv() != nil { return "static method call" } return "static function call" } return "dynamic function call" } func (v *Builtin) Type() types.Type { return v.Object.Type() } func (v *Builtin) Name() string { return v.Object.Name() } func (*Builtin) Referrers() *[]Instruction { return nil } func (v *Capture) Type() types.Type { return v.Type_ } func (v *Capture) Name() string { return v.Name_ } func (v *Capture) Referrers() *[]Instruction { return &v.referrers } func (v *Global) Type() types.Type { return v.Type_ } func (v *Global) Name() string { return v.Name_ } func (v *Global) Pos() token.Pos { return v.pos } func (*Global) Referrers() *[]Instruction { return nil } func (v *Function) Name() string { return v.Name_ } func (v *Function) Type() types.Type { return v.Signature } func (v *Function) Pos() token.Pos { return v.pos } func (*Function) Referrers() *[]Instruction { return nil } func (v *Parameter) Type() types.Type { return v.Type_ } func (v *Parameter) Name() string { return v.Name_ } func (v *Parameter) Referrers() *[]Instruction { return &v.referrers } func (v *Alloc) Type() types.Type { return v.Type_ } func (v *Alloc) Name() string { return v.Name_ } func (v *Alloc) Referrers() *[]Instruction { return &v.referrers } func (v *Register) Type() types.Type { return v.Type_ } func (v *Register) setType(typ types.Type) { v.Type_ = typ } func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) } func (v *Register) setNum(num int) { v.num = num } func (v *Register) Referrers() *[]Instruction { return &v.referrers } func (v *Register) asRegister() *Register { return v } func (v *Register) Pos() token.Pos { return v.pos } func (v *Register) setPos(pos token.Pos) { v.pos = pos } func (v *anInstruction) Block() *BasicBlock { return v.Block_ } func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block } func (t *Type) Name() string { return t.NamedType.Obj().Name() } func (t *Type) Pos() token.Pos { return t.NamedType.Obj().Pos() } func (t *Type) String() string { return t.Name() } func (t *Type) Type() types.Type { return t.NamedType } func (p *Package) Name() string { return p.Types.Name() } func (c *Constant) Name() string { return c.Name_ } func (c *Constant) Pos() token.Pos { return c.pos } func (c *Constant) String() string { return c.Name() } func (c *Constant) Type() types.Type { return c.Value.Type() } // Func returns the package-level function of the specified name, // or nil if not found. // func (p *Package) Func(name string) (f *Function) { f, _ = p.Members[name].(*Function) return } // Var returns the package-level variable of the specified name, // or nil if not found. // func (p *Package) Var(name string) (g *Global) { g, _ = p.Members[name].(*Global) return } // Const returns the package-level constant of the specified name, // or nil if not found. // func (p *Package) Const(name string) (c *Constant) { c, _ = p.Members[name].(*Constant) return } // Type returns the package-level type of the specified name, // or nil if not found. // func (p *Package) Type(name string) (t *Type) { t, _ = p.Members[name].(*Type) return } // "Implements" relation boilerplate. // Don't try to factor this using promotion and mix-ins: the long-hand // form serves as better documentation, including in godoc. func (*Alloc) ImplementsValue() {} func (*BinOp) ImplementsValue() {} func (*Builtin) ImplementsValue() {} func (*Call) ImplementsValue() {} func (*Capture) ImplementsValue() {} func (*ChangeInterface) ImplementsValue() {} func (*ChangeType) ImplementsValue() {} func (*Convert) ImplementsValue() {} func (*Extract) ImplementsValue() {} func (*Field) ImplementsValue() {} func (*FieldAddr) ImplementsValue() {} func (*Function) ImplementsValue() {} func (*Global) ImplementsValue() {} func (*Index) ImplementsValue() {} func (*IndexAddr) ImplementsValue() {} func (*Literal) ImplementsValue() {} func (*Lookup) ImplementsValue() {} func (*MakeChan) ImplementsValue() {} func (*MakeClosure) ImplementsValue() {} func (*MakeInterface) ImplementsValue() {} func (*MakeMap) ImplementsValue() {} func (*MakeSlice) ImplementsValue() {} func (*Next) ImplementsValue() {} func (*Parameter) ImplementsValue() {} func (*Phi) ImplementsValue() {} func (*Range) ImplementsValue() {} func (*Select) ImplementsValue() {} func (*Slice) ImplementsValue() {} func (*TypeAssert) ImplementsValue() {} func (*UnOp) ImplementsValue() {} func (*Constant) ImplementsMember() {} func (*Function) ImplementsMember() {} func (*Global) ImplementsMember() {} func (*Type) ImplementsMember() {} func (*Alloc) ImplementsInstruction() {} func (*BinOp) ImplementsInstruction() {} func (*Call) ImplementsInstruction() {} func (*ChangeInterface) ImplementsInstruction() {} func (*ChangeType) ImplementsInstruction() {} func (*Convert) ImplementsInstruction() {} func (*Defer) ImplementsInstruction() {} func (*Extract) ImplementsInstruction() {} func (*Field) ImplementsInstruction() {} func (*FieldAddr) ImplementsInstruction() {} func (*Go) ImplementsInstruction() {} func (*If) ImplementsInstruction() {} func (*Index) ImplementsInstruction() {} func (*IndexAddr) ImplementsInstruction() {} func (*Jump) ImplementsInstruction() {} func (*Lookup) ImplementsInstruction() {} func (*MakeChan) ImplementsInstruction() {} func (*MakeClosure) ImplementsInstruction() {} func (*MakeInterface) ImplementsInstruction() {} func (*MakeMap) ImplementsInstruction() {} func (*MakeSlice) ImplementsInstruction() {} func (*MapUpdate) ImplementsInstruction() {} func (*Next) ImplementsInstruction() {} func (*Panic) ImplementsInstruction() {} func (*Phi) ImplementsInstruction() {} func (*Range) ImplementsInstruction() {} func (*Ret) ImplementsInstruction() {} func (*RunDefers) ImplementsInstruction() {} func (*Select) ImplementsInstruction() {} func (*Send) ImplementsInstruction() {} func (*Slice) ImplementsInstruction() {} func (*Store) ImplementsInstruction() {} func (*TypeAssert) ImplementsInstruction() {} func (*UnOp) ImplementsInstruction() {} func (v *Alloc) Pos() token.Pos { return v.pos } func (v *Call) Pos() token.Pos { return v.Call.pos } func (s *Defer) Pos() token.Pos { return s.Call.pos } func (s *Go) Pos() token.Pos { return s.Call.pos } func (s *MapUpdate) Pos() token.Pos { return s.pos } func (s *Panic) Pos() token.Pos { return s.pos } func (s *Ret) Pos() token.Pos { return s.pos } func (s *Send) Pos() token.Pos { return s.pos } func (s *Store) Pos() token.Pos { return s.pos } func (s *If) Pos() token.Pos { return token.NoPos } func (s *Jump) Pos() token.Pos { return token.NoPos } func (s *RunDefers) Pos() token.Pos { return token.NoPos } // Operands. func (v *Alloc) Operands(rands []*Value) []*Value { return rands } func (v *BinOp) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Y) } func (c *CallCommon) Operands(rands []*Value) []*Value { rands = append(rands, &c.Recv, &c.Func) for i := range c.Args { rands = append(rands, &c.Args[i]) } return rands } func (s *Go) Operands(rands []*Value) []*Value { return s.Call.Operands(rands) } func (s *Call) Operands(rands []*Value) []*Value { return s.Call.Operands(rands) } func (s *Defer) Operands(rands []*Value) []*Value { return s.Call.Operands(rands) } func (v *ChangeInterface) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *ChangeType) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *Convert) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *Extract) Operands(rands []*Value) []*Value { return append(rands, &v.Tuple) } func (v *Field) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *FieldAddr) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (s *If) Operands(rands []*Value) []*Value { return append(rands, &s.Cond) } func (v *Index) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (v *IndexAddr) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (*Jump) Operands(rands []*Value) []*Value { return rands } func (v *Lookup) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Index) } func (v *MakeChan) Operands(rands []*Value) []*Value { return append(rands, &v.Size) } func (v *MakeClosure) Operands(rands []*Value) []*Value { rands = append(rands, &v.Fn) for i := range v.Bindings { rands = append(rands, &v.Bindings[i]) } return rands } func (v *MakeInterface) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *MakeMap) Operands(rands []*Value) []*Value { return append(rands, &v.Reserve) } func (v *MakeSlice) Operands(rands []*Value) []*Value { return append(rands, &v.Len, &v.Cap) } func (v *MapUpdate) Operands(rands []*Value) []*Value { return append(rands, &v.Map, &v.Key, &v.Value) } func (v *Next) Operands(rands []*Value) []*Value { return append(rands, &v.Iter) } func (s *Panic) Operands(rands []*Value) []*Value { return append(rands, &s.X) } func (v *Phi) Operands(rands []*Value) []*Value { for i := range v.Edges { rands = append(rands, &v.Edges[i]) } return rands } func (v *Range) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (s *Ret) Operands(rands []*Value) []*Value { for i := range s.Results { rands = append(rands, &s.Results[i]) } return rands } func (*RunDefers) Operands(rands []*Value) []*Value { return rands } func (v *Select) Operands(rands []*Value) []*Value { for i := range v.States { rands = append(rands, &v.States[i].Chan, &v.States[i].Send) } return rands } func (s *Send) Operands(rands []*Value) []*Value { return append(rands, &s.Chan, &s.X) } func (v *Slice) Operands(rands []*Value) []*Value { return append(rands, &v.X, &v.Low, &v.High) } func (s *Store) Operands(rands []*Value) []*Value { return append(rands, &s.Addr, &s.Val) } func (v *TypeAssert) Operands(rands []*Value) []*Value { return append(rands, &v.X) } func (v *UnOp) Operands(rands []*Value) []*Value { return append(rands, &v.X) }