// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // System calls and other sys.stuff for 386, Linux // #include "go_asm.h" #include "go_tls.h" #include "textflag.h" TEXT runtime·exit(SB),NOSPLIT,$0 MOVL $252, AX // syscall number MOVL code+0(FP), BX CALL *runtime·_vdso(SB) INT $3 // not reached RET TEXT runtime·exit1(SB),NOSPLIT,$0 MOVL $1, AX // exit - exit the current os thread MOVL code+0(FP), BX CALL *runtime·_vdso(SB) INT $3 // not reached RET TEXT runtime·open(SB),NOSPLIT,$0 MOVL $5, AX // syscall - open MOVL name+0(FP), BX MOVL mode+4(FP), CX MOVL perm+8(FP), DX CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) MOVL $-1, AX MOVL AX, ret+12(FP) RET TEXT runtime·closefd(SB),NOSPLIT,$0 MOVL $6, AX // syscall - close MOVL fd+0(FP), BX CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) MOVL $-1, AX MOVL AX, ret+4(FP) RET TEXT runtime·write(SB),NOSPLIT,$0 MOVL $4, AX // syscall - write MOVL fd+0(FP), BX MOVL p+4(FP), CX MOVL n+8(FP), DX CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) MOVL $-1, AX MOVL AX, ret+12(FP) RET TEXT runtime·read(SB),NOSPLIT,$0 MOVL $3, AX // syscall - read MOVL fd+0(FP), BX MOVL p+4(FP), CX MOVL n+8(FP), DX CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) MOVL $-1, AX MOVL AX, ret+12(FP) RET TEXT runtime·getrlimit(SB),NOSPLIT,$0 MOVL $191, AX // syscall - ugetrlimit MOVL kind+0(FP), BX MOVL limit+4(FP), CX CALL *runtime·_vdso(SB) MOVL AX, ret+8(FP) RET TEXT runtime·usleep(SB),NOSPLIT,$8 MOVL $0, DX MOVL usec+0(FP), AX MOVL $1000000, CX DIVL CX MOVL AX, 0(SP) MOVL DX, 4(SP) // select(0, 0, 0, 0, &tv) MOVL $142, AX MOVL $0, BX MOVL $0, CX MOVL $0, DX MOVL $0, SI LEAL 0(SP), DI CALL *runtime·_vdso(SB) RET TEXT runtime·raise(SB),NOSPLIT,$12 MOVL $224, AX // syscall - gettid CALL *runtime·_vdso(SB) MOVL AX, BX // arg 1 tid MOVL sig+0(FP), CX // arg 2 signal MOVL $238, AX // syscall - tkill CALL *runtime·_vdso(SB) RET TEXT runtime·raiseproc(SB),NOSPLIT,$12 MOVL $20, AX // syscall - getpid CALL *runtime·_vdso(SB) MOVL AX, BX // arg 1 pid MOVL sig+0(FP), CX // arg 2 signal MOVL $37, AX // syscall - kill CALL *runtime·_vdso(SB) RET TEXT runtime·setitimer(SB),NOSPLIT,$0-12 MOVL $104, AX // syscall - setitimer MOVL mode+0(FP), BX MOVL new+4(FP), CX MOVL old+8(FP), DX CALL *runtime·_vdso(SB) RET TEXT runtime·mincore(SB),NOSPLIT,$0-16 MOVL $218, AX // syscall - mincore MOVL addr+0(FP), BX MOVL n+4(FP), CX MOVL dst+8(FP), DX CALL *runtime·_vdso(SB) MOVL AX, ret+12(FP) RET // func now() (sec int64, nsec int32) TEXT time·now(SB), NOSPLIT, $32 MOVL $265, AX // syscall - clock_gettime MOVL $0, BX // CLOCK_REALTIME LEAL 8(SP), CX MOVL $0, DX CALL *runtime·_vdso(SB) MOVL 8(SP), AX // sec MOVL 12(SP), BX // nsec // sec is in AX, nsec in BX MOVL AX, sec+0(FP) MOVL $0, sec+4(FP) MOVL BX, nsec+8(FP) RET // int64 nanotime(void) so really // void nanotime(int64 *nsec) TEXT runtime·nanotime(SB), NOSPLIT, $32 MOVL $265, AX // syscall - clock_gettime MOVL $1, BX // CLOCK_MONOTONIC LEAL 8(SP), CX MOVL $0, DX CALL *runtime·_vdso(SB) MOVL 8(SP), AX // sec MOVL 12(SP), BX // nsec // sec is in AX, nsec in BX // convert to DX:AX nsec MOVL $1000000000, CX MULL CX ADDL BX, AX ADCL $0, DX MOVL AX, ret_lo+0(FP) MOVL DX, ret_hi+4(FP) RET TEXT runtime·rtsigprocmask(SB),NOSPLIT,$0 MOVL $175, AX // syscall entry MOVL sig+0(FP), BX MOVL new+4(FP), CX MOVL old+8(FP), DX MOVL size+12(FP), SI CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) INT $3 RET TEXT runtime·rt_sigaction(SB),NOSPLIT,$0 MOVL $174, AX // syscall - rt_sigaction MOVL sig+0(FP), BX MOVL new+4(FP), CX MOVL old+8(FP), DX MOVL size+12(FP), SI CALL *runtime·_vdso(SB) MOVL AX, ret+16(FP) RET TEXT runtime·sigfwd(SB),NOSPLIT,$12-16 MOVL sig+4(FP), AX MOVL AX, 0(SP) MOVL info+8(FP), AX MOVL AX, 4(SP) MOVL ctx+12(FP), AX MOVL AX, 8(SP) MOVL fn+0(FP), AX CALL AX RET TEXT runtime·sigtramp(SB),NOSPLIT,$12 MOVL sig+0(FP), BX MOVL BX, 0(SP) MOVL info+4(FP), BX MOVL BX, 4(SP) MOVL context+8(FP), BX MOVL BX, 8(SP) CALL runtime·sigtrampgo(SB) RET TEXT runtime·sigreturn(SB),NOSPLIT,$0 MOVL $173, AX // rt_sigreturn // Sigreturn expects same SP as signal handler, // so cannot CALL *runtime._vsdo(SB) here. INT $0x80 INT $3 // not reached RET TEXT runtime·mmap(SB),NOSPLIT,$0 MOVL $192, AX // mmap2 MOVL addr+0(FP), BX MOVL n+4(FP), CX MOVL prot+8(FP), DX MOVL flags+12(FP), SI MOVL fd+16(FP), DI MOVL off+20(FP), BP SHRL $12, BP CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 3(PC) NOTL AX INCL AX MOVL AX, ret+24(FP) RET TEXT runtime·munmap(SB),NOSPLIT,$0 MOVL $91, AX // munmap MOVL addr+0(FP), BX MOVL n+4(FP), CX CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) INT $3 RET TEXT runtime·madvise(SB),NOSPLIT,$0 MOVL $219, AX // madvise MOVL addr+0(FP), BX MOVL n+4(FP), CX MOVL flags+8(FP), DX CALL *runtime·_vdso(SB) // ignore failure - maybe pages are locked RET // int32 futex(int32 *uaddr, int32 op, int32 val, // struct timespec *timeout, int32 *uaddr2, int32 val2); TEXT runtime·futex(SB),NOSPLIT,$0 MOVL $240, AX // futex MOVL addr+0(FP), BX MOVL op+4(FP), CX MOVL val+8(FP), DX MOVL ts+12(FP), SI MOVL addr2+16(FP), DI MOVL val3+20(FP), BP CALL *runtime·_vdso(SB) MOVL AX, ret+24(FP) RET // int32 clone(int32 flags, void *stack, M *mp, G *gp, void (*fn)(void)); TEXT runtime·clone(SB),NOSPLIT,$0 MOVL $120, AX // clone MOVL flags+0(FP), BX MOVL stack+4(FP), CX MOVL $0, DX // parent tid ptr MOVL $0, DI // child tid ptr // Copy mp, gp, fn off parent stack for use by child. SUBL $16, CX MOVL mm+8(FP), SI MOVL SI, 0(CX) MOVL gg+12(FP), SI MOVL SI, 4(CX) MOVL fn+16(FP), SI MOVL SI, 8(CX) MOVL $1234, 12(CX) // cannot use CALL *runtime·_vdso(SB) here, because // the stack changes during the system call (after // CALL *runtime·_vdso(SB), the child is still using // the parent's stack when executing its RET instruction). INT $0x80 // In parent, return. CMPL AX, $0 JEQ 3(PC) MOVL AX, ret+20(FP) RET // Paranoia: check that SP is as we expect. MOVL 12(SP), BP CMPL BP, $1234 JEQ 2(PC) INT $3 // Initialize AX to Linux tid MOVL $224, AX CALL *runtime·_vdso(SB) MOVL 0(SP), BX // m MOVL 4(SP), DX // g MOVL 8(SP), SI // fn CMPL BX, $0 JEQ nog CMPL DX, $0 JEQ nog MOVL AX, m_procid(BX) // save tid as m->procid // set up ldt 7+id to point at m->tls. // newosproc left the id in tls[0]. LEAL m_tls(BX), BP MOVL 0(BP), DI ADDL $7, DI // m0 is LDT#7. count up. // setldt(tls#, &tls, sizeof tls) PUSHAL // save registers PUSHL $32 // sizeof tls PUSHL BP // &tls PUSHL DI // tls # CALL runtime·setldt(SB) POPL AX POPL AX POPL AX POPAL // Now segment is established. Initialize m, g. get_tls(AX) MOVL DX, g(AX) MOVL BX, g_m(DX) CALL runtime·stackcheck(SB) // smashes AX, CX MOVL 0(DX), DX // paranoia; check they are not nil MOVL 0(BX), BX // more paranoia; check that stack splitting code works PUSHAL CALL runtime·emptyfunc(SB) POPAL nog: CALL SI // fn() CALL runtime·exit1(SB) MOVL $0x1234, 0x1005 TEXT runtime·sigaltstack(SB),NOSPLIT,$-8 MOVL $186, AX // sigaltstack MOVL new+4(SP), BX MOVL old+8(SP), CX CALL *runtime·_vdso(SB) CMPL AX, $0xfffff001 JLS 2(PC) INT $3 RET // // struct user_desc { // unsigned int entry_number; // unsigned long base_addr; // unsigned int limit; // unsigned int seg_32bit:1; // unsigned int contents:2; // unsigned int read_exec_only:1; // unsigned int limit_in_pages:1; // unsigned int seg_not_present:1; // unsigned int useable:1; // }; #define SEG_32BIT 0x01 // contents are the 2 bits 0x02 and 0x04. #define CONTENTS_DATA 0x00 #define CONTENTS_STACK 0x02 #define CONTENTS_CODE 0x04 #define READ_EXEC_ONLY 0x08 #define LIMIT_IN_PAGES 0x10 #define SEG_NOT_PRESENT 0x20 #define USEABLE 0x40 // setldt(int entry, int address, int limit) TEXT runtime·setldt(SB),NOSPLIT,$32 MOVL entry+0(FP), BX // entry MOVL address+4(FP), CX // base address /* * When linking against the system libraries, * we use its pthread_create and let it set up %gs * for us. When we do that, the private storage * we get is not at 0(GS), but -4(GS). * To insulate the rest of the tool chain from this * ugliness, 8l rewrites 0(TLS) into -4(GS) for us. * To accommodate that rewrite, we translate * the address here and bump the limit to 0xffffffff (no limit) * so that -4(GS) maps to 0(address). * Also, the final 0(GS) (current 4(CX)) has to point * to itself, to mimic ELF. */ ADDL $0x4, CX // address MOVL CX, 0(CX) // set up user_desc LEAL 16(SP), AX // struct user_desc MOVL BX, 0(AX) MOVL CX, 4(AX) MOVL $0xfffff, 8(AX) MOVL $(SEG_32BIT|LIMIT_IN_PAGES|USEABLE|CONTENTS_DATA), 12(AX) // flag bits // call modify_ldt MOVL $1, BX // func = 1 (write) MOVL AX, CX // user_desc MOVL $16, DX // sizeof(user_desc) MOVL $123, AX // syscall - modify_ldt CALL *runtime·_vdso(SB) // breakpoint on error CMPL AX, $0xfffff001 JLS 2(PC) INT $3 // compute segment selector - (entry*8+7) MOVL entry+0(FP), AX SHLL $3, AX ADDL $7, AX MOVW AX, GS RET TEXT runtime·osyield(SB),NOSPLIT,$0 MOVL $158, AX CALL *runtime·_vdso(SB) RET TEXT runtime·sched_getaffinity(SB),NOSPLIT,$0 MOVL $242, AX // syscall - sched_getaffinity MOVL pid+0(FP), BX MOVL len+4(FP), CX MOVL buf+8(FP), DX CALL *runtime·_vdso(SB) MOVL AX, ret+12(FP) RET // int32 runtime·epollcreate(int32 size); TEXT runtime·epollcreate(SB),NOSPLIT,$0 MOVL $254, AX MOVL size+0(FP), BX CALL *runtime·_vdso(SB) MOVL AX, ret+4(FP) RET // int32 runtime·epollcreate1(int32 flags); TEXT runtime·epollcreate1(SB),NOSPLIT,$0 MOVL $329, AX MOVL flags+0(FP), BX CALL *runtime·_vdso(SB) MOVL AX, ret+4(FP) RET // func epollctl(epfd, op, fd int32, ev *epollEvent) int TEXT runtime·epollctl(SB),NOSPLIT,$0 MOVL $255, AX MOVL epfd+0(FP), BX MOVL op+4(FP), CX MOVL fd+8(FP), DX MOVL ev+12(FP), SI CALL *runtime·_vdso(SB) MOVL AX, ret+16(FP) RET // int32 runtime·epollwait(int32 epfd, EpollEvent *ev, int32 nev, int32 timeout); TEXT runtime·epollwait(SB),NOSPLIT,$0 MOVL $256, AX MOVL epfd+0(FP), BX MOVL ev+4(FP), CX MOVL nev+8(FP), DX MOVL timeout+12(FP), SI CALL *runtime·_vdso(SB) MOVL AX, ret+16(FP) RET // void runtime·closeonexec(int32 fd); TEXT runtime·closeonexec(SB),NOSPLIT,$0 MOVL $55, AX // fcntl MOVL fd+0(FP), BX // fd MOVL $2, CX // F_SETFD MOVL $1, DX // FD_CLOEXEC CALL *runtime·_vdso(SB) RET