// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "os_GOOS.h" #include "arch_GOARCH.h" int8 *goos = "plan9"; void runtime·minit(void) { } static int32 getproccount(void) { int32 fd, i, n, ncpu; byte buf[2048]; fd = runtime·open((byte*)"/dev/sysstat", OREAD); if(fd < 0) return 1; ncpu = 0; for(;;) { n = runtime·read(fd, buf, sizeof buf); if(n <= 0) break; for(i = 0; i < n; i++) { if(buf[i] == '\n') ncpu++; } } runtime·close(fd); return ncpu > 0 ? ncpu : 1; } void runtime·osinit(void) { runtime·ncpu = getproccount(); } void runtime·goenvs(void) { } void runtime·initsig(void) { } void runtime·osyield(void) { runtime·sleep(0); } void runtime·usleep(uint32 µs) { uint32 ms; ms = µs/1000; if(ms == 0) ms = 1; runtime·sleep(ms); } int64 runtime·nanotime(void) { static int32 fd = -1; byte b[8]; uint32 hi, lo; // As long as all goroutines share the same file // descriptor table we can get away with using // just a static fd. Without a lock the file can // be opened twice but that's okay. // // Using /dev/bintime gives us a latency on the // order of ten microseconds between two calls. // // The naïve implementation (without the cached // file descriptor) is roughly four times slower // in 9vx on a 2.16 GHz Intel Core 2 Duo. if(fd < 0 && (fd = runtime·open((byte*)"/dev/bintime", OREAD|OCEXEC)) < 0) return 0; if(runtime·pread(fd, b, sizeof b, 0) != sizeof b) return 0; hi = b[0]<<24 | b[1]<<16 | b[2]<<8 | b[3]; lo = b[4]<<24 | b[5]<<16 | b[6]<<8 | b[7]; return (int64)hi<<32 | (int64)lo; } void time·now(int64 sec, int32 nsec) { int64 ns; ns = runtime·nanotime(); sec = ns / 1000000000LL; nsec = ns - sec * 1000000000LL; FLUSH(&sec); FLUSH(&nsec); } extern Tos *_tos; void runtime·exit(int32) { int32 fd; uint8 buf[128]; uint8 tmp[16]; uint8 *p, *q; int32 pid; runtime·memclr(buf, sizeof buf); runtime·memclr(tmp, sizeof tmp); pid = _tos->pid; /* build path string /proc/pid/notepg */ for(q=tmp; pid > 0;) { *q++ = '0' + (pid%10); pid = pid/10; } p = buf; runtime·memmove((void*)p, (void*)"/proc/", 6); p += 6; for(q--; q >= tmp;) *p++ = *q--; runtime·memmove((void*)p, (void*)"/notepg", 7); /* post interrupt note */ fd = runtime·open(buf, OWRITE); runtime·write(fd, "interrupt", 9); runtime·exits(nil); } void runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) { m->tls[0] = m->id; // so 386 asm can find it if(0){ runtime·printf("newosproc stk=%p m=%p g=%p fn=%p rfork=%p id=%d/%d ostk=%p\n", stk, m, g, fn, runtime·rfork, m->id, m->tls[0], &m); } if(runtime·rfork(RFPROC|RFMEM|RFNOWAIT, stk, m, g, fn) < 0) runtime·throw("newosproc: rfork failed"); } uintptr runtime·semacreate(void) { return 1; } int32 runtime·semasleep(int64 ns) { int32 ret; int32 ms; if(ns >= 0) { // TODO: Plan 9 needs a new system call, tsemacquire. // The kernel implementation is the same as semacquire // except with a tsleep and check for timeout. // It would be great if the implementation returned the // value that was added to the semaphore, so that on // timeout the return value would be 0, on success 1. // Then the error string does not have to be parsed // to detect timeout. // // If a negative time indicates no timeout, then // semacquire can be implemented (in the kernel) // as tsemacquire(p, v, -1). runtime·throw("semasleep: timed sleep not implemented on Plan 9"); /* if(ns < 0) ms = -1; else if(ns/1000 > 0x7fffffffll) ms = 0x7fffffff; else ms = ns/1000; ret = runtime·plan9_tsemacquire(&m->waitsemacount, 1, ms); if(ret == 1) return 0; // success return -1; // timeout or interrupted */ } while(runtime·plan9_semacquire(&m->waitsemacount, 1) < 0) { /* interrupted; try again */ } return 0; // success } void runtime·semawakeup(M *mp) { runtime·plan9_semrelease(&mp->waitsemacount, 1); } void os·sigpipe(void) { runtime·throw("too many writes on closed pipe"); } /* * placeholder - once notes are implemented, * a signal generating a panic must appear as * a call to this function for correct handling by * traceback. */ void runtime·sigpanic(void) { } int32 runtime·read(int32 fd, void *buf, int32 nbytes) { return runtime·pread(fd, buf, nbytes, -1LL); } int32 runtime·write(int32 fd, void *buf, int32 nbytes) { return runtime·pwrite(fd, buf, nbytes, -1LL); } uintptr runtime·memlimit(void) { return 0; }