// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime_test import ( "fmt" "math" "math/rand" . "runtime" "testing" "time" ) func TestGcPacer(t *testing.T) { t.Parallel() const initialHeapBytes = 256 << 10 for _, e := range []*gcExecTest{ { // The most basic test case: a steady-state heap. // Growth to an O(MiB) heap, then constant heap size, alloc/scan rates. name: "Steady", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n >= 25 { // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // Same as the steady-state case, but lots of stacks to scan relative to the heap size. name: "SteadyBigStacks", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(132.0), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(2048).sum(ramp(128<<20, 8)), length: 50, checker: func(t *testing.T, c []gcCycleResult) { // Check the same conditions as the steady-state case, except the old pacer can't // really handle this well, so don't check the goal ratio for it. n := len(c) if n >= 25 { // For the pacer redesign, assert something even stronger: at this alloc/scan rate, // it should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) } }, }, { // Same as the steady-state case, but lots of globals to scan relative to the heap size. name: "SteadyBigGlobals", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 128 << 20, nCores: 8, allocRate: constant(132.0), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { // Check the same conditions as the steady-state case, except the old pacer can't // really handle this well, so don't check the goal ratio for it. n := len(c) if n >= 25 { // For the pacer redesign, assert something even stronger: at this alloc/scan rate, // it should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) } }, }, { // This tests the GC pacer's response to a small change in allocation rate. name: "StepAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0).sum(ramp(66.0, 1).delay(50)), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 100, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if (n >= 25 && n < 50) || n >= 75 { // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles // and then is able to settle again after a significant jump in allocation rate. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // This tests the GC pacer's response to a large change in allocation rate. name: "HeavyStepAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33).sum(ramp(330, 1).delay(50)), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 100, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if (n >= 25 && n < 50) || n >= 75 { // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles // and then is able to settle again after a significant jump in allocation rate. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // This tests the GC pacer's response to a change in the fraction of the scannable heap. name: "StepScannableFrac", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(128.0), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(0.2).sum(unit(0.5).delay(50)), stackBytes: constant(8192), length: 100, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if (n >= 25 && n < 50) || n >= 75 { // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles // and then is able to settle again after a significant jump in allocation rate. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // Tests the pacer for a high GOGC value with a large heap growth happening // in the middle. The purpose of the large heap growth is to check if GC // utilization ends up sensitive name: "HighGOGC", gcPercent: 1500, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: random(7, 0x53).offset(165), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12), random(0.01, 0x1), unit(14).delay(25)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 12 { if n == 26 { // In the 26th cycle there's a heap growth. Overshoot is expected to maintain // a stable utilization, but we should *never* overshoot more than GOGC of // the next cycle. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.90, 15) } else { // Give a wider goal range here. With such a high GOGC value we're going to be // forced to undershoot. // // TODO(mknyszek): Instead of placing a 0.95 limit on the trigger, make the limit // based on absolute bytes, that's based somewhat in how the minimum heap size // is determined. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.90, 1.05) } // Ensure utilization remains stable despite a growth in live heap size // at GC #25. This test fails prior to the GC pacer redesign. // // Because GOGC is so large, we should also be really close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, GCGoalUtilization+0.03) assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.03) } }, }, { // This test makes sure that in the face of a varying (in this case, oscillating) allocation // rate, the pacer does a reasonably good job of staying abreast of the changes. name: "OscAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: oscillate(13, 0, 8).offset(67), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 12 { // After the 12th GC, the heap will stop growing. Now, just make sure that: // 1. Utilization isn't varying _too_ much, and // 2. The pacer is mostly keeping up with the goal. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) assertInRange(t, "GC utilization", c[n-1].gcUtilization, 0.25, 0.3) } }, }, { // This test is the same as OscAlloc, but instead of oscillating, the allocation rate is jittery. name: "JitterAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: random(13, 0xf).offset(132), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12), random(0.01, 0xe)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 12 { // After the 12th GC, the heap will stop growing. Now, just make sure that: // 1. Utilization isn't varying _too_ much, and // 2. The pacer is mostly keeping up with the goal. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) assertInRange(t, "GC utilization", c[n-1].gcUtilization, 0.25, 0.3) } }, }, { // This test is the same as JitterAlloc, but with a much higher allocation rate. // The jitter is proportionally the same. name: "HeavyJitterAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: random(33.0, 0x0).offset(330), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12), random(0.01, 0x152)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 13 { // After the 12th GC, the heap will stop growing. Now, just make sure that: // 1. Utilization isn't varying _too_ much, and // 2. The pacer is mostly keeping up with the goal. // We start at the 13th here because we want to use the 12th as a reference. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) // Unlike the other tests, GC utilization here will vary more and tend higher. // Just make sure it's not going too crazy. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) } }, }, { // This test sets a slow allocation rate and a small heap (close to the minimum heap size) // to try to minimize the difference between the trigger and the goal. name: "SmallHeapSlowAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(1.0), scanRate: constant(2048.0), growthRate: constant(2.0).sum(ramp(-1.0, 3)), scannableFrac: constant(0.01), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 4 { // After the 4th GC, the heap will stop growing. // First, let's make sure we're finishing near the goal, with some extra // room because we're probably going to be triggering early. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.925, 1.025) // Next, let's make sure there's some minimum distance between the goal // and the trigger. It should be proportional to the runway (hence the // trigger ratio check, instead of a check against the runway). assertInRange(t, "trigger ratio", c[n-1].triggerRatio(), 0.925, 0.975) } if n > 25 { // Double-check that GC utilization looks OK. // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure GC utilization has mostly levelled off. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) } }, }, { // This test sets a slow allocation rate and a medium heap (around 10x the min heap size) // to try to minimize the difference between the trigger and the goal. name: "MediumHeapSlowAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(1.0), scanRate: constant(2048.0), growthRate: constant(2.0).sum(ramp(-1.0, 8)), scannableFrac: constant(0.01), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 9 { // After the 4th GC, the heap will stop growing. // First, let's make sure we're finishing near the goal, with some extra // room because we're probably going to be triggering early. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.925, 1.025) // Next, let's make sure there's some minimum distance between the goal // and the trigger. It should be proportional to the runway (hence the // trigger ratio check, instead of a check against the runway). assertInRange(t, "trigger ratio", c[n-1].triggerRatio(), 0.925, 0.975) } if n > 25 { // Double-check that GC utilization looks OK. // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure GC utilization has mostly levelled off. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) } }, }, { // This test sets a slow allocation rate and a large heap to try to minimize the // difference between the trigger and the goal. name: "LargeHeapSlowAlloc", gcPercent: 100, memoryLimit: math.MaxInt64, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(1.0), scanRate: constant(2048.0), growthRate: constant(4.0).sum(ramp(-3.0, 12)), scannableFrac: constant(0.01), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 13 { // After the 4th GC, the heap will stop growing. // First, let's make sure we're finishing near the goal. assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) // Next, let's make sure there's some minimum distance between the goal // and the trigger. It should be around the default minimum heap size. assertInRange(t, "runway", c[n-1].runway(), DefaultHeapMinimum-64<<10, DefaultHeapMinimum+64<<10) } if n > 25 { // Double-check that GC utilization looks OK. // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure GC utilization has mostly levelled off. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.05) assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[11].gcUtilization, 0.05) } }, }, { // The most basic test case with a memory limit: a steady-state heap. // Growth to an O(MiB) heap, then constant heap size, alloc/scan rates. // Provide a lot of room for the limit. Essentially, this should behave just like // the "Steady" test. Note that we don't simulate non-heap overheads, so the // memory limit and the heap limit are identical. name: "SteadyMemoryLimit", gcPercent: 100, memoryLimit: 512 << 20, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if peak := c[n-1].heapPeak; peak >= (512<<20)-MemoryLimitHeapGoalHeadroom { t.Errorf("peak heap size reaches heap limit: %d", peak) } if n >= 25 { // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // This is the same as the previous test, but gcPercent = -1, so the heap *should* grow // all the way to the peak. name: "SteadyMemoryLimitNoGCPercent", gcPercent: -1, memoryLimit: 512 << 20, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(2.0).sum(ramp(-1.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if goal := c[n-1].heapGoal; goal != (512<<20)-MemoryLimitHeapGoalHeadroom { t.Errorf("heap goal is not the heap limit: %d", goal) } if n >= 25 { // At this alloc/scan rate, the pacer should be extremely close to the goal utilization. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // This test ensures that the pacer doesn't fall over even when the live heap exceeds // the memory limit. It also makes sure GC utilization actually rises to push back. name: "ExceedMemoryLimit", gcPercent: 100, memoryLimit: 512 << 20, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(3.5).sum(ramp(-2.5, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 12 { // We're way over the memory limit, so we want to make sure our goal is set // as low as it possibly can be. if goal, live := c[n-1].heapGoal, c[n-1].heapLive; goal != live { t.Errorf("heap goal is not equal to live heap: %d != %d", goal, live) } } if n >= 25 { // Due to memory pressure, we should scale to 100% GC CPU utilization. // Note that in practice this won't actually happen because of the CPU limiter, // but it's not the pacer's job to limit CPU usage. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, 1.0, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. // In this case, that just means it's not wavering around a whole bunch. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) } }, }, { // Same as the previous test, but with gcPercent = -1. name: "ExceedMemoryLimitNoGCPercent", gcPercent: -1, memoryLimit: 512 << 20, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(3.5).sum(ramp(-2.5, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n < 10 { if goal := c[n-1].heapGoal; goal != (512<<20)-MemoryLimitHeapGoalHeadroom { t.Errorf("heap goal is not the heap limit: %d", goal) } } if n > 12 { // We're way over the memory limit, so we want to make sure our goal is set // as low as it possibly can be. if goal, live := c[n-1].heapGoal, c[n-1].heapLive; goal != live { t.Errorf("heap goal is not equal to live heap: %d != %d", goal, live) } } if n >= 25 { // Due to memory pressure, we should scale to 100% GC CPU utilization. // Note that in practice this won't actually happen because of the CPU limiter, // but it's not the pacer's job to limit CPU usage. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, 1.0, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles. // In this case, that just means it's not wavering around a whole bunch. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) } }, }, { // This test ensures that the pacer maintains the memory limit as the heap grows. name: "MaintainMemoryLimit", gcPercent: 100, memoryLimit: 512 << 20, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(3.0).sum(ramp(-2.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if n > 12 { // We're trying to saturate the memory limit. if goal := c[n-1].heapGoal; goal != (512<<20)-MemoryLimitHeapGoalHeadroom { t.Errorf("heap goal is not the heap limit: %d", goal) } } if n >= 25 { // At this alloc/scan rate, the pacer should be extremely close to the goal utilization, // even with the additional memory pressure. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles and // that it's meeting its goal. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, { // Same as the previous test, but with gcPercent = -1. name: "MaintainMemoryLimitNoGCPercent", gcPercent: -1, memoryLimit: 512 << 20, globalsBytes: 32 << 10, nCores: 8, allocRate: constant(33.0), scanRate: constant(1024.0), growthRate: constant(3.0).sum(ramp(-2.0, 12)), scannableFrac: constant(1.0), stackBytes: constant(8192), length: 50, checker: func(t *testing.T, c []gcCycleResult) { n := len(c) if goal := c[n-1].heapGoal; goal != (512<<20)-MemoryLimitHeapGoalHeadroom { t.Errorf("heap goal is not the heap limit: %d", goal) } if n >= 25 { // At this alloc/scan rate, the pacer should be extremely close to the goal utilization, // even with the additional memory pressure. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, GCGoalUtilization, 0.005) // Make sure the pacer settles into a non-degenerate state in at least 25 GC cycles and // that it's meeting its goal. assertInEpsilon(t, "GC utilization", c[n-1].gcUtilization, c[n-2].gcUtilization, 0.005) assertInRange(t, "goal ratio", c[n-1].goalRatio(), 0.95, 1.05) } }, }, // TODO(mknyszek): Write a test that exercises the pacer's hard goal. // This is difficult in the idealized model this testing framework places // the pacer in, because the calculated overshoot is directly proportional // to the runway for the case of the expected work. // However, it is still possible to trigger this case if something exceptional // happens between calls to revise; the framework just doesn't support this yet. } { e := e t.Run(e.name, func(t *testing.T) { t.Parallel() c := NewGCController(e.gcPercent, e.memoryLimit) var bytesAllocatedBlackLast int64 results := make([]gcCycleResult, 0, e.length) for i := 0; i < e.length; i++ { cycle := e.next() c.StartCycle(cycle.stackBytes, e.globalsBytes, cycle.scannableFrac, e.nCores) // Update pacer incrementally as we complete scan work. const ( revisePeriod = 500 * time.Microsecond rateConv = 1024 * float64(revisePeriod) / float64(time.Millisecond) ) var nextHeapMarked int64 if i == 0 { nextHeapMarked = initialHeapBytes } else { nextHeapMarked = int64(float64(int64(c.HeapMarked())-bytesAllocatedBlackLast) * cycle.growthRate) } globalsScanWorkLeft := int64(e.globalsBytes) stackScanWorkLeft := int64(cycle.stackBytes) heapScanWorkLeft := int64(float64(nextHeapMarked) * cycle.scannableFrac) doWork := func(work int64) (int64, int64, int64) { var deltas [3]int64 // Do globals work first, then stacks, then heap. for i, workLeft := range []*int64{&globalsScanWorkLeft, &stackScanWorkLeft, &heapScanWorkLeft} { if *workLeft == 0 { continue } if *workLeft > work { deltas[i] += work *workLeft -= work work = 0 break } else { deltas[i] += *workLeft work -= *workLeft *workLeft = 0 } } return deltas[0], deltas[1], deltas[2] } var ( gcDuration int64 assistTime int64 bytesAllocatedBlack int64 ) for heapScanWorkLeft+stackScanWorkLeft+globalsScanWorkLeft > 0 { // Simulate GC assist pacing. // // Note that this is an idealized view of the GC assist pacing // mechanism. // From the assist ratio and the alloc and scan rates, we can idealize what // the GC CPU utilization looks like. // // We start with assistRatio = (bytes of scan work) / (bytes of runway) (by definition). // // Over revisePeriod, we can also calculate how many bytes are scanned and // allocated, given some GC CPU utilization u: // // bytesScanned = scanRate * rateConv * nCores * u // bytesAllocated = allocRate * rateConv * nCores * (1 - u) // // During revisePeriod, assistRatio is kept constant, and GC assists kick in to // maintain it. Specifically, they act to prevent too many bytes being allocated // compared to how many bytes are scanned. It directly defines the ratio of // bytesScanned to bytesAllocated over this period, hence: // // assistRatio = bytesScanned / bytesAllocated // // From this, we can solve for utilization, because everything else has already // been determined: // // assistRatio = (scanRate * rateConv * nCores * u) / (allocRate * rateConv * nCores * (1 - u)) // assistRatio = (scanRate * u) / (allocRate * (1 - u)) // assistRatio * allocRate * (1-u) = scanRate * u // assistRatio * allocRate - assistRatio * allocRate * u = scanRate * u // assistRatio * allocRate = assistRatio * allocRate * u + scanRate * u // assistRatio * allocRate = (assistRatio * allocRate + scanRate) * u // u = (assistRatio * allocRate) / (assistRatio * allocRate + scanRate) // // Note that this may give a utilization that is _less_ than GCBackgroundUtilization, // which isn't possible in practice because of dedicated workers. Thus, this case // must be interpreted as GC assists not kicking in at all, and just round up. All // downstream values will then have this accounted for. assistRatio := c.AssistWorkPerByte() utilization := assistRatio * cycle.allocRate / (assistRatio*cycle.allocRate + cycle.scanRate) if utilization < GCBackgroundUtilization { utilization = GCBackgroundUtilization } // Knowing the utilization, calculate bytesScanned and bytesAllocated. bytesScanned := int64(cycle.scanRate * rateConv * float64(e.nCores) * utilization) bytesAllocated := int64(cycle.allocRate * rateConv * float64(e.nCores) * (1 - utilization)) // Subtract work from our model. globalsScanned, stackScanned, heapScanned := doWork(bytesScanned) // doWork may not use all of bytesScanned. // In this case, the GC actually ends sometime in this period. // Let's figure out when, exactly, and adjust bytesAllocated too. actualElapsed := revisePeriod actualAllocated := bytesAllocated if actualScanned := globalsScanned + stackScanned + heapScanned; actualScanned < bytesScanned { // actualScanned = scanRate * rateConv * (t / revisePeriod) * nCores * u // => t = actualScanned * revisePeriod / (scanRate * rateConv * nCores * u) actualElapsed = time.Duration(float64(actualScanned) * float64(revisePeriod) / (cycle.scanRate * rateConv * float64(e.nCores) * utilization)) actualAllocated = int64(cycle.allocRate * rateConv * float64(actualElapsed) / float64(revisePeriod) * float64(e.nCores) * (1 - utilization)) } // Ask the pacer to revise. c.Revise(GCControllerReviseDelta{ HeapLive: actualAllocated, HeapScan: int64(float64(actualAllocated) * cycle.scannableFrac), HeapScanWork: heapScanned, StackScanWork: stackScanned, GlobalsScanWork: globalsScanned, }) // Accumulate variables. assistTime += int64(float64(actualElapsed) * float64(e.nCores) * (utilization - GCBackgroundUtilization)) gcDuration += int64(actualElapsed) bytesAllocatedBlack += actualAllocated } // Put together the results, log them, and concatenate them. result := gcCycleResult{ cycle: i + 1, heapLive: c.HeapMarked(), heapScannable: int64(float64(int64(c.HeapMarked())-bytesAllocatedBlackLast) * cycle.scannableFrac), heapTrigger: c.Triggered(), heapPeak: c.HeapLive(), heapGoal: c.HeapGoal(), gcUtilization: float64(assistTime)/(float64(gcDuration)*float64(e.nCores)) + GCBackgroundUtilization, } t.Log("GC", result.String()) results = append(results, result) // Run the checker for this test. e.check(t, results) c.EndCycle(uint64(nextHeapMarked+bytesAllocatedBlack), assistTime, gcDuration, e.nCores) bytesAllocatedBlackLast = bytesAllocatedBlack } }) } } type gcExecTest struct { name string gcPercent int memoryLimit int64 globalsBytes uint64 nCores int allocRate float64Stream // > 0, KiB / cpu-ms scanRate float64Stream // > 0, KiB / cpu-ms growthRate float64Stream // > 0 scannableFrac float64Stream // Clamped to [0, 1] stackBytes float64Stream // Multiple of 2048. length int checker func(*testing.T, []gcCycleResult) } // minRate is an arbitrary minimum for allocRate, scanRate, and growthRate. // These values just cannot be zero. const minRate = 0.0001 func (e *gcExecTest) next() gcCycle { return gcCycle{ allocRate: e.allocRate.min(minRate)(), scanRate: e.scanRate.min(minRate)(), growthRate: e.growthRate.min(minRate)(), scannableFrac: e.scannableFrac.limit(0, 1)(), stackBytes: uint64(e.stackBytes.quantize(2048).min(0)()), } } func (e *gcExecTest) check(t *testing.T, results []gcCycleResult) { t.Helper() // Do some basic general checks first. n := len(results) switch n { case 0: t.Fatal("no results passed to check") return case 1: if results[0].cycle != 1 { t.Error("first cycle has incorrect number") } default: if results[n-1].cycle != results[n-2].cycle+1 { t.Error("cycle numbers out of order") } } if u := results[n-1].gcUtilization; u < 0 || u > 1 { t.Fatal("GC utilization not within acceptable bounds") } if s := results[n-1].heapScannable; s < 0 { t.Fatal("heapScannable is negative") } if e.checker == nil { t.Fatal("test-specific checker is missing") } // Run the test-specific checker. e.checker(t, results) } type gcCycle struct { allocRate float64 scanRate float64 growthRate float64 scannableFrac float64 stackBytes uint64 } type gcCycleResult struct { cycle int // These come directly from the pacer, so uint64. heapLive uint64 heapTrigger uint64 heapGoal uint64 heapPeak uint64 // These are produced by the simulation, so int64 and // float64 are more appropriate, so that we can check for // bad states in the simulation. heapScannable int64 gcUtilization float64 } func (r *gcCycleResult) goalRatio() float64 { return float64(r.heapPeak) / float64(r.heapGoal) } func (r *gcCycleResult) runway() float64 { return float64(r.heapGoal - r.heapTrigger) } func (r *gcCycleResult) triggerRatio() float64 { return float64(r.heapTrigger-r.heapLive) / float64(r.heapGoal-r.heapLive) } func (r *gcCycleResult) String() string { return fmt.Sprintf("%d %2.1f%% %d->%d->%d (goal: %d)", r.cycle, r.gcUtilization*100, r.heapLive, r.heapTrigger, r.heapPeak, r.heapGoal) } func assertInEpsilon(t *testing.T, name string, a, b, epsilon float64) { t.Helper() assertInRange(t, name, a, b-epsilon, b+epsilon) } func assertInRange(t *testing.T, name string, a, min, max float64) { t.Helper() if a < min || a > max { t.Errorf("%s not in range (%f, %f): %f", name, min, max, a) } } // float64Stream is a function that generates an infinite stream of // float64 values when called repeatedly. type float64Stream func() float64 // constant returns a stream that generates the value c. func constant(c float64) float64Stream { return func() float64 { return c } } // unit returns a stream that generates a single peak with // amplitude amp, followed by zeroes. // // In another manner of speaking, this is the Kronecker delta. func unit(amp float64) float64Stream { dropped := false return func() float64 { if dropped { return 0 } dropped = true return amp } } // oscillate returns a stream that oscillates sinusoidally // with the given amplitude, phase, and period. func oscillate(amp, phase float64, period int) float64Stream { var cycle int return func() float64 { p := float64(cycle)/float64(period)*2*math.Pi + phase cycle++ if cycle == period { cycle = 0 } return math.Sin(p) * amp } } // ramp returns a stream that moves from zero to height // over the course of length steps. func ramp(height float64, length int) float64Stream { var cycle int return func() float64 { h := height * float64(cycle) / float64(length) if cycle < length { cycle++ } return h } } // random returns a stream that generates random numbers // between -amp and amp. func random(amp float64, seed int64) float64Stream { r := rand.New(rand.NewSource(seed)) return func() float64 { return ((r.Float64() - 0.5) * 2) * amp } } // delay returns a new stream which is a buffered version // of f: it returns zero for cycles steps, followed by f. func (f float64Stream) delay(cycles int) float64Stream { zeroes := 0 return func() float64 { if zeroes < cycles { zeroes++ return 0 } return f() } } // scale returns a new stream that is f, but attenuated by a // constant factor. func (f float64Stream) scale(amt float64) float64Stream { return func() float64 { return f() * amt } } // offset returns a new stream that is f but offset by amt // at each step. func (f float64Stream) offset(amt float64) float64Stream { return func() float64 { old := f() return old + amt } } // sum returns a new stream that is the sum of all input streams // at each step. func (f float64Stream) sum(fs ...float64Stream) float64Stream { return func() float64 { sum := f() for _, s := range fs { sum += s() } return sum } } // quantize returns a new stream that rounds f to a multiple // of mult at each step. func (f float64Stream) quantize(mult float64) float64Stream { return func() float64 { r := f() / mult if r < 0 { return math.Ceil(r) * mult } return math.Floor(r) * mult } } // min returns a new stream that replaces all values produced // by f lower than min with min. func (f float64Stream) min(min float64) float64Stream { return func() float64 { return math.Max(min, f()) } } // max returns a new stream that replaces all values produced // by f higher than max with max. func (f float64Stream) max(max float64) float64Stream { return func() float64 { return math.Min(max, f()) } } // limit returns a new stream that replaces all values produced // by f lower than min with min and higher than max with max. func (f float64Stream) limit(min, max float64) float64Stream { return func() float64 { v := f() if v < min { v = min } else if v > max { v = max } return v } } func FuzzPIController(f *testing.F) { isNormal := func(x float64) bool { return !math.IsInf(x, 0) && !math.IsNaN(x) } isPositive := func(x float64) bool { return isNormal(x) && x > 0 } // Seed with constants from controllers in the runtime. // It's not critical that we keep these in sync, they're just // reasonable seed inputs. f.Add(0.3375, 3.2e6, 1e9, 0.001, 1000.0, 0.01) f.Add(0.9, 4.0, 1000.0, -1000.0, 1000.0, 0.84) f.Fuzz(func(t *testing.T, kp, ti, tt, min, max, setPoint float64) { // Ignore uninteresting invalid parameters. These parameters // are constant, so in practice surprising values will be documented // or will be other otherwise immediately visible. // // We just want to make sure that given a non-Inf, non-NaN input, // we always get a non-Inf, non-NaN output. if !isPositive(kp) || !isPositive(ti) || !isPositive(tt) { return } if !isNormal(min) || !isNormal(max) || min > max { return } // Use a random source, but make it deterministic. rs := rand.New(rand.NewSource(800)) randFloat64 := func() float64 { return math.Float64frombits(rs.Uint64()) } p := NewPIController(kp, ti, tt, min, max) state := float64(0) for i := 0; i < 100; i++ { input := randFloat64() // Ignore the "ok" parameter. We're just trying to break it. // state is intentionally completely uncorrelated with the input. var ok bool state, ok = p.Next(input, setPoint, 1.0) if !isNormal(state) { t.Fatalf("got NaN or Inf result from controller: %f %v", state, ok) } } }) } func TestIdleMarkWorkerCount(t *testing.T) { const workers = 10 c := NewGCController(100, math.MaxInt64) c.SetMaxIdleMarkWorkers(workers) for i := 0; i < workers; i++ { if !c.NeedIdleMarkWorker() { t.Fatalf("expected to need idle mark workers: i=%d", i) } if !c.AddIdleMarkWorker() { t.Fatalf("expected to be able to add an idle mark worker: i=%d", i) } } if c.NeedIdleMarkWorker() { t.Fatalf("expected to not need idle mark workers") } if c.AddIdleMarkWorker() { t.Fatalf("expected to not be able to add an idle mark worker") } for i := 0; i < workers; i++ { c.RemoveIdleMarkWorker() if !c.NeedIdleMarkWorker() { t.Fatalf("expected to need idle mark workers after removal: i=%d", i) } } for i := 0; i < workers-1; i++ { if !c.AddIdleMarkWorker() { t.Fatalf("expected to be able to add idle mark workers after adding again: i=%d", i) } } for i := 0; i < 10; i++ { if !c.AddIdleMarkWorker() { t.Fatalf("expected to be able to add idle mark workers interleaved: i=%d", i) } if c.AddIdleMarkWorker() { t.Fatalf("expected to not be able to add idle mark workers interleaved: i=%d", i) } c.RemoveIdleMarkWorker() } // Support the max being below the count. c.SetMaxIdleMarkWorkers(0) if c.NeedIdleMarkWorker() { t.Fatalf("expected to not need idle mark workers after capacity set to 0") } if c.AddIdleMarkWorker() { t.Fatalf("expected to not be able to add idle mark workers after capacity set to 0") } for i := 0; i < workers-1; i++ { c.RemoveIdleMarkWorker() } if c.NeedIdleMarkWorker() { t.Fatalf("expected to not need idle mark workers after capacity set to 0") } if c.AddIdleMarkWorker() { t.Fatalf("expected to not be able to add idle mark workers after capacity set to 0") } c.SetMaxIdleMarkWorkers(1) if !c.NeedIdleMarkWorker() { t.Fatalf("expected to need idle mark workers after capacity set to 1") } if !c.AddIdleMarkWorker() { t.Fatalf("expected to be able to add idle mark workers after capacity set to 1") } }