// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fmt import ( "bytes" "io" "math" "os" "reflect" "strconv" "strings" "unicode" "utf8" ) // runeUnreader is the interface to something that can unread runes. // If the object provided to Scan does not satisfy this interface, // a local buffer will be used to back up the input, but its contents // will be lost when Scan returns. type runeUnreader interface { UnreadRune() os.Error } // ScanState represents the scanner state passed to custom scanners. // Scanners may do rune-at-a-time scanning or ask the ScanState // to discover the next space-delimited token. type ScanState interface { // ReadRune reads the next rune (Unicode code point) from the input. // If invoked during Scanln, Fscanln, or Sscanln, ReadRune() will // return EOF after returning the first '\n' or when reading beyond // the specified width. ReadRune() (rune int, size int, err os.Error) // UnreadRune causes the next call to ReadRune to return the same rune. UnreadRune() os.Error // Token skips space in the input if skipSpace is true, then returns the // run of Unicode code points c satisfying f(c). If f is nil, // !unicode.IsSpace(c) is used; that is, the token will hold non-space // characters. Newlines are treated as space unless the scan operation // is Scanln, Fscanln or Sscanln, in which case a newline is treated as // EOF. The returned slice points to shared data that may be overwritten // by the next call to Token, a call to a Scan function using the ScanState // as input, or when the calling Scan method returns. Token(skipSpace bool, f func(int) bool) (token []byte, err os.Error) // Width returns the value of the width option and whether it has been set. // The unit is Unicode code points. Width() (wid int, ok bool) // Because ReadRune is implemented by the interface, Read should never be // called by the scanning routines and a valid implementation of // ScanState may choose always to return an error from Read. Read(buf []byte) (n int, err os.Error) } // Scanner is implemented by any value that has a Scan method, which scans // the input for the representation of a value and stores the result in the // receiver, which must be a pointer to be useful. The Scan method is called // for any argument to Scan, Scanf, or Scanln that implements it. type Scanner interface { Scan(state ScanState, verb int) os.Error } // Scan scans text read from standard input, storing successive // space-separated values into successive arguments. Newlines count // as space. It returns the number of items successfully scanned. // If that is less than the number of arguments, err will report why. func Scan(a ...interface{}) (n int, err os.Error) { return Fscan(os.Stdin, a...) } // Scanln is similar to Scan, but stops scanning at a newline and // after the final item there must be a newline or EOF. func Scanln(a ...interface{}) (n int, err os.Error) { return Fscanln(os.Stdin, a...) } // Scanf scans text read from standard input, storing successive // space-separated values into successive arguments as determined by // the format. It returns the number of items successfully scanned. func Scanf(format string, a ...interface{}) (n int, err os.Error) { return Fscanf(os.Stdin, format, a...) } // Sscan scans the argument string, storing successive space-separated // values into successive arguments. Newlines count as space. It // returns the number of items successfully scanned. If that is less // than the number of arguments, err will report why. func Sscan(str string, a ...interface{}) (n int, err os.Error) { return Fscan(strings.NewReader(str), a...) } // Sscanln is similar to Sscan, but stops scanning at a newline and // after the final item there must be a newline or EOF. func Sscanln(str string, a ...interface{}) (n int, err os.Error) { return Fscanln(strings.NewReader(str), a...) } // Sscanf scans the argument string, storing successive space-separated // values into successive arguments as determined by the format. It // returns the number of items successfully parsed. func Sscanf(str string, format string, a ...interface{}) (n int, err os.Error) { return Fscanf(strings.NewReader(str), format, a...) } // Fscan scans text read from r, storing successive space-separated // values into successive arguments. Newlines count as space. It // returns the number of items successfully scanned. If that is less // than the number of arguments, err will report why. func Fscan(r io.Reader, a ...interface{}) (n int, err os.Error) { s, old := newScanState(r, true, false) n, err = s.doScan(a) s.free(old) return } // Fscanln is similar to Fscan, but stops scanning at a newline and // after the final item there must be a newline or EOF. func Fscanln(r io.Reader, a ...interface{}) (n int, err os.Error) { s, old := newScanState(r, false, true) n, err = s.doScan(a) s.free(old) return } // Fscanf scans text read from r, storing successive space-separated // values into successive arguments as determined by the format. It // returns the number of items successfully parsed. func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err os.Error) { s, old := newScanState(r, false, false) n, err = s.doScanf(format, a) s.free(old) return } // scanError represents an error generated by the scanning software. // It's used as a unique signature to identify such errors when recovering. type scanError struct { err os.Error } const eof = -1 // ss is the internal implementation of ScanState. type ss struct { rr io.RuneReader // where to read input buf bytes.Buffer // token accumulator peekRune int // one-rune lookahead prevRune int // last rune returned by ReadRune count int // runes consumed so far. atEOF bool // already read EOF ssave } // ssave holds the parts of ss that need to be // saved and restored on recursive scans. type ssave struct { validSave bool // is or was a part of an actual ss. nlIsEnd bool // whether newline terminates scan nlIsSpace bool // whether newline counts as white space fieldLimit int // max value of ss.count for this field; fieldLimit <= limit limit int // max value of ss.count. maxWid int // width of this field. } // The Read method is only in ScanState so that ScanState // satisfies io.Reader. It will never be called when used as // intended, so there is no need to make it actually work. func (s *ss) Read(buf []byte) (n int, err os.Error) { return 0, os.ErrorString("ScanState's Read should not be called. Use ReadRune") } func (s *ss) ReadRune() (rune int, size int, err os.Error) { if s.peekRune >= 0 { s.count++ rune = s.peekRune size = utf8.RuneLen(rune) s.prevRune = rune s.peekRune = -1 return } if s.atEOF || s.nlIsEnd && s.prevRune == '\n' || s.count >= s.fieldLimit { err = os.EOF return } rune, size, err = s.rr.ReadRune() if err == nil { s.count++ s.prevRune = rune } else if err == os.EOF { s.atEOF = true } return } func (s *ss) Width() (wid int, ok bool) { if s.maxWid == hugeWid { return 0, false } return s.maxWid, true } // The public method returns an error; this private one panics. // If getRune reaches EOF, the return value is EOF (-1). func (s *ss) getRune() (rune int) { rune, _, err := s.ReadRune() if err != nil { if err == os.EOF { return eof } s.error(err) } return } // mustReadRune turns os.EOF into a panic(io.ErrUnexpectedEOF). // It is called in cases such as string scanning where an EOF is a // syntax error. func (s *ss) mustReadRune() (rune int) { rune = s.getRune() if rune == eof { s.error(io.ErrUnexpectedEOF) } return } func (s *ss) UnreadRune() os.Error { // Don't use strings.Reader.UnreadRune for now - appears to cause a problem. // TODO(r, gri): Fix this and remove code between --- lines! // --- if _, ok := s.rr.(*strings.Reader); ok { s.peekRune = s.prevRune s.count-- return nil } // --- if u, ok := s.rr.(runeUnreader); ok { u.UnreadRune() } else { s.peekRune = s.prevRune } s.count-- return nil } func (s *ss) error(err os.Error) { panic(scanError{err}) } func (s *ss) errorString(err string) { panic(scanError{os.ErrorString(err)}) } func (s *ss) Token(skipSpace bool, f func(int) bool) (tok []byte, err os.Error) { defer func() { if e := recover(); e != nil { if se, ok := e.(scanError); ok { err = se.err } else { panic(e) } } }() if f == nil { f = notSpace } s.buf.Reset() tok = s.token(skipSpace, f) return } // notSpace is the default scanning function used in Token. func notSpace(r int) bool { return !unicode.IsSpace(r) } // readRune is a structure to enable reading UTF-8 encoded code points // from an io.Reader. It is used if the Reader given to the scanner does // not already implement io.RuneReader. type readRune struct { reader io.Reader buf [utf8.UTFMax]byte // used only inside ReadRune pending int // number of bytes in pendBuf; only >0 for bad UTF-8 pendBuf [utf8.UTFMax]byte // bytes left over } // readByte returns the next byte from the input, which may be // left over from a previous read if the UTF-8 was ill-formed. func (r *readRune) readByte() (b byte, err os.Error) { if r.pending > 0 { b = r.pendBuf[0] copy(r.pendBuf[0:], r.pendBuf[1:]) r.pending-- return } _, err = r.reader.Read(r.pendBuf[0:1]) return r.pendBuf[0], err } // unread saves the bytes for the next read. func (r *readRune) unread(buf []byte) { copy(r.pendBuf[r.pending:], buf) r.pending += len(buf) } // ReadRune returns the next UTF-8 encoded code point from the // io.Reader inside r. func (r *readRune) ReadRune() (rune int, size int, err os.Error) { r.buf[0], err = r.readByte() if err != nil { return 0, 0, err } if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII case rune = int(r.buf[0]) return } var n int for n = 1; !utf8.FullRune(r.buf[0:n]); n++ { r.buf[n], err = r.readByte() if err != nil { if err == os.EOF { err = nil break } return } } rune, size = utf8.DecodeRune(r.buf[0:n]) if size < n { // an error r.unread(r.buf[size:n]) } return } var ssFree = newCache(func() interface{} { return new(ss) }) // Allocate a new ss struct or grab a cached one. func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) { // If the reader is a *ss, then we've got a recursive // call to Scan, so re-use the scan state. s, ok := r.(*ss) if ok { old = s.ssave s.limit = s.fieldLimit s.nlIsEnd = nlIsEnd || s.nlIsEnd s.nlIsSpace = nlIsSpace return } s = ssFree.get().(*ss) if rr, ok := r.(io.RuneReader); ok { s.rr = rr } else { s.rr = &readRune{reader: r} } s.nlIsSpace = nlIsSpace s.nlIsEnd = nlIsEnd s.prevRune = -1 s.peekRune = -1 s.atEOF = false s.limit = hugeWid s.fieldLimit = hugeWid s.maxWid = hugeWid s.validSave = true return } // Save used ss structs in ssFree; avoid an allocation per invocation. func (s *ss) free(old ssave) { // If it was used recursively, just restore the old state. if old.validSave { s.ssave = old return } // Don't hold on to ss structs with large buffers. if cap(s.buf.Bytes()) > 1024 { return } s.buf.Reset() s.rr = nil ssFree.put(s) } // skipSpace skips spaces and maybe newlines. func (s *ss) skipSpace(stopAtNewline bool) { for { rune := s.getRune() if rune == eof { return } if rune == '\n' { if stopAtNewline { break } if s.nlIsSpace { continue } s.errorString("unexpected newline") return } if !unicode.IsSpace(rune) { s.UnreadRune() break } } } // token returns the next space-delimited string from the input. It // skips white space. For Scanln, it stops at newlines. For Scan, // newlines are treated as spaces. func (s *ss) token(skipSpace bool, f func(int) bool) []byte { if skipSpace { s.skipSpace(false) } // read until white space or newline for { rune := s.getRune() if rune == eof { break } if !f(rune) { s.UnreadRune() break } s.buf.WriteRune(rune) } return s.buf.Bytes() } // typeError indicates that the type of the operand did not match the format func (s *ss) typeError(field interface{}, expected string) { s.errorString("expected field of type pointer to " + expected + "; found " + reflect.TypeOf(field).String()) } var complexError = os.ErrorString("syntax error scanning complex number") var boolError = os.ErrorString("syntax error scanning boolean") // consume reads the next rune in the input and reports whether it is in the ok string. // If accept is true, it puts the character into the input token. func (s *ss) consume(ok string, accept bool) bool { rune := s.getRune() if rune == eof { return false } if strings.IndexRune(ok, rune) >= 0 { if accept { s.buf.WriteRune(rune) } return true } if rune != eof && accept { s.UnreadRune() } return false } // peek reports whether the next character is in the ok string, without consuming it. func (s *ss) peek(ok string) bool { rune := s.getRune() if rune != eof { s.UnreadRune() } return strings.IndexRune(ok, rune) >= 0 } // accept checks the next rune in the input. If it's a byte (sic) in the string, it puts it in the // buffer and returns true. Otherwise it return false. func (s *ss) accept(ok string) bool { return s.consume(ok, true) } // okVerb verifies that the verb is present in the list, setting s.err appropriately if not. func (s *ss) okVerb(verb int, okVerbs, typ string) bool { for _, v := range okVerbs { if v == verb { return true } } s.errorString("bad verb %" + string(verb) + " for " + typ) return false } // scanBool returns the value of the boolean represented by the next token. func (s *ss) scanBool(verb int) bool { if !s.okVerb(verb, "tv", "boolean") { return false } // Syntax-checking a boolean is annoying. We're not fastidious about case. switch s.mustReadRune() { case '0': return false case '1': return true case 't', 'T': if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) { s.error(boolError) } return true case 'f', 'F': if s.accept("aL") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) { s.error(boolError) } return false } return false } // Numerical elements const ( binaryDigits = "01" octalDigits = "01234567" decimalDigits = "0123456789" hexadecimalDigits = "0123456789aAbBcCdDeEfF" sign = "+-" period = "." exponent = "eEp" ) // getBase returns the numeric base represented by the verb and its digit string. func (s *ss) getBase(verb int) (base int, digits string) { s.okVerb(verb, "bdoUxXv", "integer") // sets s.err base = 10 digits = decimalDigits switch verb { case 'b': base = 2 digits = binaryDigits case 'o': base = 8 digits = octalDigits case 'x', 'X', 'U': base = 16 digits = hexadecimalDigits } return } // scanNumber returns the numerical string with specified digits starting here. func (s *ss) scanNumber(digits string, haveDigits bool) string { if !haveDigits && !s.accept(digits) { s.errorString("expected integer") } for s.accept(digits) { } return s.buf.String() } // scanRune returns the next rune value in the input. func (s *ss) scanRune(bitSize int) int64 { rune := int64(s.mustReadRune()) n := uint(bitSize) x := (rune << (64 - n)) >> (64 - n) if x != rune { s.errorString("overflow on character value " + string(rune)) } return rune } // scanBasePrefix reports whether the integer begins with a 0 or 0x, // and returns the base, digit string, and whether a zero was found. // It is called only if the verb is %v. func (s *ss) scanBasePrefix() (base int, digits string, found bool) { if !s.peek("0") { return 10, decimalDigits, false } s.accept("0") found = true // We've put a digit into the token buffer. // Special cases for '0' && '0x' base, digits = 8, octalDigits if s.peek("xX") { s.consume("xX", false) base, digits = 16, hexadecimalDigits } return } // scanInt returns the value of the integer represented by the next // token, checking for overflow. Any error is stored in s.err. func (s *ss) scanInt(verb int, bitSize int) int64 { if verb == 'c' { return s.scanRune(bitSize) } s.skipSpace(false) base, digits := s.getBase(verb) haveDigits := false if verb == 'U' { if !s.consume("U", false) || !s.consume("+", false) { s.errorString("bad unicode format ") } } else { s.accept(sign) // If there's a sign, it will be left in the token buffer. if verb == 'v' { base, digits, haveDigits = s.scanBasePrefix() } } tok := s.scanNumber(digits, haveDigits) i, err := strconv.Btoi64(tok, base) if err != nil { s.error(err) } n := uint(bitSize) x := (i << (64 - n)) >> (64 - n) if x != i { s.errorString("integer overflow on token " + tok) } return i } // scanUint returns the value of the unsigned integer represented // by the next token, checking for overflow. Any error is stored in s.err. func (s *ss) scanUint(verb int, bitSize int) uint64 { if verb == 'c' { return uint64(s.scanRune(bitSize)) } s.skipSpace(false) base, digits := s.getBase(verb) haveDigits := false if verb == 'U' { if !s.consume("U", false) || !s.consume("+", false) { s.errorString("bad unicode format ") } } else if verb == 'v' { base, digits, haveDigits = s.scanBasePrefix() } tok := s.scanNumber(digits, haveDigits) i, err := strconv.Btoui64(tok, base) if err != nil { s.error(err) } n := uint(bitSize) x := (i << (64 - n)) >> (64 - n) if x != i { s.errorString("unsigned integer overflow on token " + tok) } return i } // floatToken returns the floating-point number starting here, no longer than swid // if the width is specified. It's not rigorous about syntax because it doesn't check that // we have at least some digits, but Atof will do that. func (s *ss) floatToken() string { s.buf.Reset() // NaN? if s.accept("nN") && s.accept("aA") && s.accept("nN") { return s.buf.String() } // leading sign? s.accept(sign) // Inf? if s.accept("iI") && s.accept("nN") && s.accept("fF") { return s.buf.String() } // digits? for s.accept(decimalDigits) { } // decimal point? if s.accept(period) { // fraction? for s.accept(decimalDigits) { } } // exponent? if s.accept(exponent) { // leading sign? s.accept(sign) // digits? for s.accept(decimalDigits) { } } return s.buf.String() } // complexTokens returns the real and imaginary parts of the complex number starting here. // The number might be parenthesized and has the format (N+Ni) where N is a floating-point // number and there are no spaces within. func (s *ss) complexTokens() (real, imag string) { // TODO: accept N and Ni independently? parens := s.accept("(") real = s.floatToken() s.buf.Reset() // Must now have a sign. if !s.accept("+-") { s.error(complexError) } // Sign is now in buffer imagSign := s.buf.String() imag = s.floatToken() if !s.accept("i") { s.error(complexError) } if parens && !s.accept(")") { s.error(complexError) } return real, imagSign + imag } // convertFloat converts the string to a float64value. func (s *ss) convertFloat(str string, n int) float64 { if p := strings.Index(str, "p"); p >= 0 { // Atof doesn't handle power-of-2 exponents, // but they're easy to evaluate. f, err := strconv.AtofN(str[:p], n) if err != nil { // Put full string into error. if e, ok := err.(*strconv.NumError); ok { e.Num = str } s.error(err) } n, err := strconv.Atoi(str[p+1:]) if err != nil { // Put full string into error. if e, ok := err.(*strconv.NumError); ok { e.Num = str } s.error(err) } return math.Ldexp(f, n) } f, err := strconv.AtofN(str, n) if err != nil { s.error(err) } return f } // convertComplex converts the next token to a complex128 value. // The atof argument is a type-specific reader for the underlying type. // If we're reading complex64, atof will parse float32s and convert them // to float64's to avoid reproducing this code for each complex type. func (s *ss) scanComplex(verb int, n int) complex128 { if !s.okVerb(verb, floatVerbs, "complex") { return 0 } s.skipSpace(false) sreal, simag := s.complexTokens() real := s.convertFloat(sreal, n/2) imag := s.convertFloat(simag, n/2) return complex(real, imag) } // convertString returns the string represented by the next input characters. // The format of the input is determined by the verb. func (s *ss) convertString(verb int) (str string) { if !s.okVerb(verb, "svqx", "string") { return "" } s.skipSpace(false) switch verb { case 'q': str = s.quotedString() case 'x': str = s.hexString() default: str = string(s.token(true, notSpace)) // %s and %v just return the next word } // Empty strings other than with %q are not OK. if len(str) == 0 && verb != 'q' && s.maxWid > 0 { s.errorString("Scan: no data for string") } return } // quotedString returns the double- or back-quoted string represented by the next input characters. func (s *ss) quotedString() string { quote := s.mustReadRune() switch quote { case '`': // Back-quoted: Anything goes until EOF or back quote. for { rune := s.mustReadRune() if rune == quote { break } s.buf.WriteRune(rune) } return s.buf.String() case '"': // Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes. s.buf.WriteRune(quote) for { rune := s.mustReadRune() s.buf.WriteRune(rune) if rune == '\\' { // In a legal backslash escape, no matter how long, only the character // immediately after the escape can itself be a backslash or quote. // Thus we only need to protect the first character after the backslash. rune := s.mustReadRune() s.buf.WriteRune(rune) } else if rune == '"' { break } } result, err := strconv.Unquote(s.buf.String()) if err != nil { s.error(err) } return result default: s.errorString("expected quoted string") } return "" } // hexDigit returns the value of the hexadecimal digit func (s *ss) hexDigit(digit int) int { switch digit { case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9': return digit - '0' case 'a', 'b', 'c', 'd', 'e', 'f': return 10 + digit - 'a' case 'A', 'B', 'C', 'D', 'E', 'F': return 10 + digit - 'A' } s.errorString("Scan: illegal hex digit") return 0 } // hexByte returns the next hex-encoded (two-character) byte from the input. // There must be either two hexadecimal digits or a space character in the input. func (s *ss) hexByte() (b byte, ok bool) { rune1 := s.getRune() if rune1 == eof { return } if unicode.IsSpace(rune1) { s.UnreadRune() return } rune2 := s.mustReadRune() return byte(s.hexDigit(rune1)<<4 | s.hexDigit(rune2)), true } // hexString returns the space-delimited hexpair-encoded string. func (s *ss) hexString() string { for { b, ok := s.hexByte() if !ok { break } s.buf.WriteByte(b) } if s.buf.Len() == 0 { s.errorString("Scan: no hex data for %x string") return "" } return s.buf.String() } const floatVerbs = "beEfFgGv" const hugeWid = 1 << 30 // scanOne scans a single value, deriving the scanner from the type of the argument. func (s *ss) scanOne(verb int, field interface{}) { s.buf.Reset() var err os.Error // If the parameter has its own Scan method, use that. if v, ok := field.(Scanner); ok { err = v.Scan(s, verb) if err != nil { if err == os.EOF { err = io.ErrUnexpectedEOF } s.error(err) } return } switch v := field.(type) { case *bool: *v = s.scanBool(verb) case *complex64: *v = complex64(s.scanComplex(verb, 64)) case *complex128: *v = s.scanComplex(verb, 128) case *int: *v = int(s.scanInt(verb, intBits)) case *int8: *v = int8(s.scanInt(verb, 8)) case *int16: *v = int16(s.scanInt(verb, 16)) case *int32: *v = int32(s.scanInt(verb, 32)) case *int64: *v = s.scanInt(verb, 64) case *uint: *v = uint(s.scanUint(verb, intBits)) case *uint8: *v = uint8(s.scanUint(verb, 8)) case *uint16: *v = uint16(s.scanUint(verb, 16)) case *uint32: *v = uint32(s.scanUint(verb, 32)) case *uint64: *v = s.scanUint(verb, 64) case *uintptr: *v = uintptr(s.scanUint(verb, uintptrBits)) // Floats are tricky because you want to scan in the precision of the result, not // scan in high precision and convert, in order to preserve the correct error condition. case *float32: if s.okVerb(verb, floatVerbs, "float32") { s.skipSpace(false) *v = float32(s.convertFloat(s.floatToken(), 32)) } case *float64: if s.okVerb(verb, floatVerbs, "float64") { s.skipSpace(false) *v = s.convertFloat(s.floatToken(), 64) } case *string: *v = s.convertString(verb) case *[]byte: // We scan to string and convert so we get a copy of the data. // If we scanned to bytes, the slice would point at the buffer. *v = []byte(s.convertString(verb)) default: val := reflect.ValueOf(v) ptr := val if ptr.Kind() != reflect.Ptr { s.errorString("Scan: type not a pointer: " + val.Type().String()) return } switch v := ptr.Elem(); v.Kind() { case reflect.Bool: v.SetBool(s.scanBool(verb)) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: v.SetInt(s.scanInt(verb, v.Type().Bits())) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: v.SetUint(s.scanUint(verb, v.Type().Bits())) case reflect.String: v.SetString(s.convertString(verb)) case reflect.Slice: // For now, can only handle (renamed) []byte. typ := v.Type() if typ.Elem().Kind() != reflect.Uint8 { goto CantHandle } str := s.convertString(verb) v.Set(reflect.MakeSlice(typ, len(str), len(str))) for i := 0; i < len(str); i++ { v.Index(i).SetUint(uint64(str[i])) } case reflect.Float32, reflect.Float64: s.skipSpace(false) v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits())) case reflect.Complex64, reflect.Complex128: v.SetComplex(s.scanComplex(verb, v.Type().Bits())) default: CantHandle: s.errorString("Scan: can't handle type: " + val.Type().String()) } } } // errorHandler turns local panics into error returns. EOFs are benign. func errorHandler(errp *os.Error) { if e := recover(); e != nil { if se, ok := e.(scanError); ok { // catch local error if se.err != os.EOF { *errp = se.err } } else { panic(e) } } } // doScan does the real work for scanning without a format string. func (s *ss) doScan(a []interface{}) (numProcessed int, err os.Error) { defer errorHandler(&err) for _, field := range a { s.scanOne('v', field) numProcessed++ } // Check for newline if required. if !s.nlIsSpace { for { rune := s.getRune() if rune == '\n' || rune == eof { break } if !unicode.IsSpace(rune) { s.errorString("Scan: expected newline") break } } } return } // advance determines whether the next characters in the input match // those of the format. It returns the number of bytes (sic) consumed // in the format. Newlines included, all runs of space characters in // either input or format behave as a single space. This routine also // handles the %% case. If the return value is zero, either format // starts with a % (with no following %) or the input is empty. // If it is negative, the input did not match the string. func (s *ss) advance(format string) (i int) { for i < len(format) { fmtc, w := utf8.DecodeRuneInString(format[i:]) if fmtc == '%' { // %% acts like a real percent nextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is empty if nextc != '%' { return } i += w // skip the first % } sawSpace := false for unicode.IsSpace(fmtc) && i < len(format) { sawSpace = true i += w fmtc, w = utf8.DecodeRuneInString(format[i:]) } if sawSpace { // There was space in the format, so there should be space (EOF) // in the input. inputc := s.getRune() if inputc == eof { return } if !unicode.IsSpace(inputc) { // Space in format but not in input: error s.errorString("expected space in input to match format") } s.skipSpace(true) continue } inputc := s.mustReadRune() if fmtc != inputc { s.UnreadRune() return -1 } i += w } return } // doScanf does the real work when scanning with a format string. // At the moment, it handles only pointers to basic types. func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err os.Error) { defer errorHandler(&err) end := len(format) - 1 // We process one item per non-trivial format for i := 0; i <= end; { w := s.advance(format[i:]) if w > 0 { i += w continue } // Either we failed to advance, we have a percent character, or we ran out of input. if format[i] != '%' { // Can't advance format. Why not? if w < 0 { s.errorString("input does not match format") } // Otherwise at EOF; "too many operands" error handled below break } i++ // % is one byte // do we have 20 (width)? var widPresent bool s.maxWid, widPresent, i = parsenum(format, i, end) if !widPresent { s.maxWid = hugeWid } s.fieldLimit = s.limit if f := s.count + s.maxWid; f < s.fieldLimit { s.fieldLimit = f } c, w := utf8.DecodeRuneInString(format[i:]) i += w if numProcessed >= len(a) { // out of operands s.errorString("too few operands for format %" + format[i-w:]) break } field := a[numProcessed] s.scanOne(c, field) numProcessed++ s.fieldLimit = s.limit } if numProcessed < len(a) { s.errorString("too many operands") } return }