// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd linux netbsd openbsd solaris // Minimal RFC 6724 address selection. package net import "sort" func sortByRFC6724(addrs []IPAddr) { if len(addrs) < 2 { return } sortByRFC6724withSrcs(addrs, srcAddrs(addrs)) } func sortByRFC6724withSrcs(addrs []IPAddr, srcs []IP) { if len(addrs) != len(srcs) { panic("internal error") } addrAttr := make([]ipAttr, len(addrs)) srcAttr := make([]ipAttr, len(srcs)) for i, v := range addrs { addrAttr[i] = ipAttrOf(v.IP) srcAttr[i] = ipAttrOf(srcs[i]) } sort.Stable(&byRFC6724{ addrs: addrs, addrAttr: addrAttr, srcs: srcs, srcAttr: srcAttr, }) } // srcsAddrs tries to UDP-connect to each address to see if it has a // route. (This doesn't send any packets). The destination port // number is irrelevant. func srcAddrs(addrs []IPAddr) []IP { srcs := make([]IP, len(addrs)) dst := UDPAddr{Port: 9} for i := range addrs { dst.IP = addrs[i].IP dst.Zone = addrs[i].Zone c, err := DialUDP("udp", nil, &dst) if err == nil { if src, ok := c.LocalAddr().(*UDPAddr); ok { srcs[i] = src.IP } c.Close() } } return srcs } type ipAttr struct { Scope scope Precedence uint8 Label uint8 } func ipAttrOf(ip IP) ipAttr { if ip == nil { return ipAttr{} } match := rfc6724policyTable.Classify(ip) return ipAttr{ Scope: classifyScope(ip), Precedence: match.Precedence, Label: match.Label, } } type byRFC6724 struct { addrs []IPAddr // addrs to sort addrAttr []ipAttr srcs []IP // or nil if unreachable srcAttr []ipAttr } func (s *byRFC6724) Len() int { return len(s.addrs) } func (s *byRFC6724) Swap(i, j int) { s.addrs[i], s.addrs[j] = s.addrs[j], s.addrs[i] s.srcs[i], s.srcs[j] = s.srcs[j], s.srcs[i] s.addrAttr[i], s.addrAttr[j] = s.addrAttr[j], s.addrAttr[i] s.srcAttr[i], s.srcAttr[j] = s.srcAttr[j], s.srcAttr[i] } // Less reports whether i is a better destination address for this // host than j. // // The algorithm and variable names comes from RFC 6724 section 6. func (s *byRFC6724) Less(i, j int) bool { DA := s.addrs[i].IP DB := s.addrs[j].IP SourceDA := s.srcs[i] SourceDB := s.srcs[j] attrDA := &s.addrAttr[i] attrDB := &s.addrAttr[j] attrSourceDA := &s.srcAttr[i] attrSourceDB := &s.srcAttr[j] const preferDA = true const preferDB = false // Rule 1: Avoid unusable destinations. // If DB is known to be unreachable or if Source(DB) is undefined, then // prefer DA. Similarly, if DA is known to be unreachable or if // Source(DA) is undefined, then prefer DB. if SourceDA == nil && SourceDB == nil { return false // "equal" } if SourceDB == nil { return preferDA } if SourceDA == nil { return preferDB } // Rule 2: Prefer matching scope. // If Scope(DA) = Scope(Source(DA)) and Scope(DB) <> Scope(Source(DB)), // then prefer DA. Similarly, if Scope(DA) <> Scope(Source(DA)) and // Scope(DB) = Scope(Source(DB)), then prefer DB. if attrDA.Scope == attrSourceDA.Scope && attrDB.Scope != attrSourceDB.Scope { return preferDA } if attrDA.Scope != attrSourceDA.Scope && attrDB.Scope == attrSourceDB.Scope { return preferDB } // Rule 3: Avoid deprecated addresses. // If Source(DA) is deprecated and Source(DB) is not, then prefer DB. // Similarly, if Source(DA) is not deprecated and Source(DB) is // deprecated, then prefer DA. // TODO(bradfitz): implement? low priority for now. // Rule 4: Prefer home addresses. // If Source(DA) is simultaneously a home address and care-of address // and Source(DB) is not, then prefer DA. Similarly, if Source(DB) is // simultaneously a home address and care-of address and Source(DA) is // not, then prefer DB. // TODO(bradfitz): implement? low priority for now. // Rule 5: Prefer matching label. // If Label(Source(DA)) = Label(DA) and Label(Source(DB)) <> Label(DB), // then prefer DA. Similarly, if Label(Source(DA)) <> Label(DA) and // Label(Source(DB)) = Label(DB), then prefer DB. if attrSourceDA.Label == attrDA.Label && attrSourceDB.Label != attrDB.Label { return preferDA } if attrSourceDA.Label != attrDA.Label && attrSourceDB.Label == attrDB.Label { return preferDB } // Rule 6: Prefer higher precedence. // If Precedence(DA) > Precedence(DB), then prefer DA. Similarly, if // Precedence(DA) < Precedence(DB), then prefer DB. if attrDA.Precedence > attrDB.Precedence { return preferDA } if attrDA.Precedence < attrDB.Precedence { return preferDB } // Rule 7: Prefer native transport. // If DA is reached via an encapsulating transition mechanism (e.g., // IPv6 in IPv4) and DB is not, then prefer DB. Similarly, if DB is // reached via encapsulation and DA is not, then prefer DA. // TODO(bradfitz): implement? low priority for now. // Rule 8: Prefer smaller scope. // If Scope(DA) < Scope(DB), then prefer DA. Similarly, if Scope(DA) > // Scope(DB), then prefer DB. if attrDA.Scope < attrDB.Scope { return preferDA } if attrDA.Scope > attrDB.Scope { return preferDB } // Rule 9: Use longest matching prefix. // When DA and DB belong to the same address family (both are IPv6 or // both are IPv4): If CommonPrefixLen(Source(DA), DA) > // CommonPrefixLen(Source(DB), DB), then prefer DA. Similarly, if // CommonPrefixLen(Source(DA), DA) < CommonPrefixLen(Source(DB), DB), // then prefer DB. da4 := DA.To4() != nil db4 := DB.To4() != nil if da4 == db4 { commonA := commonPrefixLen(SourceDA, DA) commonB := commonPrefixLen(SourceDB, DB) // CommonPrefixLen doesn't really make sense for IPv4, and even // causes problems for common load balancing practices // (e.g., https://golang.org/issue/13283). Glibc instead only // uses CommonPrefixLen for IPv4 when the source and destination // addresses are on the same subnet, but that requires extra // work to find the netmask for our source addresses. As a // simpler heuristic, we limit its use to when the source and // destination belong to the same special purpose block. if da4 { if !sameIPv4SpecialPurposeBlock(SourceDA, DA) { commonA = 0 } if !sameIPv4SpecialPurposeBlock(SourceDB, DB) { commonB = 0 } } if commonA > commonB { return preferDA } if commonA < commonB { return preferDB } } // Rule 10: Otherwise, leave the order unchanged. // If DA preceded DB in the original list, prefer DA. // Otherwise, prefer DB. return false // "equal" } type policyTableEntry struct { Prefix *IPNet Precedence uint8 Label uint8 } type policyTable []policyTableEntry // RFC 6724 section 2.1. var rfc6724policyTable = policyTable{ { Prefix: mustCIDR("::1/128"), Precedence: 50, Label: 0, }, { Prefix: mustCIDR("::/0"), Precedence: 40, Label: 1, }, { // IPv4-compatible, etc. Prefix: mustCIDR("::ffff:0:0/96"), Precedence: 35, Label: 4, }, { // 6to4 Prefix: mustCIDR("2002::/16"), Precedence: 30, Label: 2, }, { // Teredo Prefix: mustCIDR("2001::/32"), Precedence: 5, Label: 5, }, { Prefix: mustCIDR("fc00::/7"), Precedence: 3, Label: 13, }, { Prefix: mustCIDR("::/96"), Precedence: 1, Label: 3, }, { Prefix: mustCIDR("fec0::/10"), Precedence: 1, Label: 11, }, { Prefix: mustCIDR("3ffe::/16"), Precedence: 1, Label: 12, }, } func init() { sort.Sort(sort.Reverse(byMaskLength(rfc6724policyTable))) } // byMaskLength sorts policyTableEntry by the size of their Prefix.Mask.Size, // from smallest mask, to largest. type byMaskLength []policyTableEntry func (s byMaskLength) Len() int { return len(s) } func (s byMaskLength) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s byMaskLength) Less(i, j int) bool { isize, _ := s[i].Prefix.Mask.Size() jsize, _ := s[j].Prefix.Mask.Size() return isize < jsize } // mustCIDR calls ParseCIDR and panics on any error, or if the network // is not IPv6. func mustCIDR(s string) *IPNet { ip, ipNet, err := ParseCIDR(s) if err != nil { panic(err.Error()) } if len(ip) != IPv6len { panic("unexpected IP length") } return ipNet } // Classify returns the policyTableEntry of the entry with the longest // matching prefix that contains ip. // The table t must be sorted from largest mask size to smallest. func (t policyTable) Classify(ip IP) policyTableEntry { for _, ent := range t { if ent.Prefix.Contains(ip) { return ent } } return policyTableEntry{} } // RFC 6724 section 3.1. type scope uint8 const ( scopeInterfaceLocal scope = 0x1 scopeLinkLocal scope = 0x2 scopeAdminLocal scope = 0x4 scopeSiteLocal scope = 0x5 scopeOrgLocal scope = 0x8 scopeGlobal scope = 0xe ) func classifyScope(ip IP) scope { if ip.IsLoopback() || ip.IsLinkLocalUnicast() { return scopeLinkLocal } ipv6 := len(ip) == IPv6len && ip.To4() == nil if ipv6 && ip.IsMulticast() { return scope(ip[1] & 0xf) } // Site-local addresses are defined in RFC 3513 section 2.5.6 // (and deprecated in RFC 3879). if ipv6 && ip[0] == 0xfe && ip[1]&0xc0 == 0xc0 { return scopeSiteLocal } return scopeGlobal } // commonPrefixLen reports the length of the longest prefix (looking // at the most significant, or leftmost, bits) that the // two addresses have in common, up to the length of a's prefix (i.e., // the portion of the address not including the interface ID). // // If a or b is an IPv4 address as an IPv6 address, the IPv4 addresses // are compared (with max common prefix length of 32). // If a and b are different IP versions, 0 is returned. // // See https://tools.ietf.org/html/rfc6724#section-2.2 func commonPrefixLen(a, b IP) (cpl int) { if a4 := a.To4(); a4 != nil { a = a4 } if b4 := b.To4(); b4 != nil { b = b4 } if len(a) != len(b) { return 0 } // If IPv6, only up to the prefix (first 64 bits) if len(a) > 8 { a = a[:8] b = b[:8] } for len(a) > 0 { if a[0] == b[0] { cpl += 8 a = a[1:] b = b[1:] continue } bits := 8 ab, bb := a[0], b[0] for { ab >>= 1 bb >>= 1 bits-- if ab == bb { cpl += bits return } } } return } // sameIPv4SpecialPurposeBlock reports whether a and b belong to the same // address block reserved by the IANA IPv4 Special-Purpose Address Registry: // http://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml func sameIPv4SpecialPurposeBlock(a, b IP) bool { a, b = a.To4(), b.To4() if a == nil || b == nil || a[0] != b[0] { return false } // IANA defines more special-purpose blocks, but these are the only // ones likely to be relevant to typical Go systems. switch a[0] { case 10: // 10.0.0.0/8: Private-Use return true case 127: // 127.0.0.0/8: Loopback return true case 169: // 169.254.0.0/16: Link Local return a[1] == 254 && b[1] == 254 case 172: // 172.16.0.0/12: Private-Use return a[1]&0xf0 == 16 && b[1]&0xf0 == 16 case 192: // 192.168.0.0/16: Private-Use return a[1] == 168 && b[1] == 168 } return false }