// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package strconv // An extFloat represents an extended floating-point number, with more // precision than a float64. It does not try to save bits: the // number represented by the structure is mant*(2^exp), with a negative // sign if neg is true. type extFloat struct { mant uint64 exp int neg bool } // Powers of ten taken from double-conversion library. // http://code.google.com/p/double-conversion/ const ( firstPowerOfTen = -348 stepPowerOfTen = 8 ) var smallPowersOfTen = [...]extFloat{ {1 << 63, -63, false}, // 1 {0xa << 60, -60, false}, // 1e1 {0x64 << 57, -57, false}, // 1e2 {0x3e8 << 54, -54, false}, // 1e3 {0x2710 << 50, -50, false}, // 1e4 {0x186a0 << 47, -47, false}, // 1e5 {0xf4240 << 44, -44, false}, // 1e6 {0x989680 << 40, -40, false}, // 1e7 } var powersOfTen = [...]extFloat{ {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 {0x8b16fb203055ac76, -1166, false}, // 10^-332 {0xcf42894a5dce35ea, -1140, false}, // 10^-324 {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 {0xe61acf033d1a45df, -1087, false}, // 10^-308 {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 {0xbe5691ef416bd60c, -1007, false}, // 10^-284 {0x8dd01fad907ffc3c, -980, false}, // 10^-276 {0xd3515c2831559a83, -954, false}, // 10^-268 {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 {0xea9c227723ee8bcb, -901, false}, // 10^-252 {0xaecc49914078536d, -874, false}, // 10^-244 {0x823c12795db6ce57, -847, false}, // 10^-236 {0xc21094364dfb5637, -821, false}, // 10^-228 {0x9096ea6f3848984f, -794, false}, // 10^-220 {0xd77485cb25823ac7, -768, false}, // 10^-212 {0xa086cfcd97bf97f4, -741, false}, // 10^-204 {0xef340a98172aace5, -715, false}, // 10^-196 {0xb23867fb2a35b28e, -688, false}, // 10^-188 {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 {0xc5dd44271ad3cdba, -635, false}, // 10^-172 {0x936b9fcebb25c996, -608, false}, // 10^-164 {0xdbac6c247d62a584, -582, false}, // 10^-156 {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 {0xf3e2f893dec3f126, -529, false}, // 10^-140 {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 {0x87625f056c7c4a8b, -475, false}, // 10^-124 {0xc9bcff6034c13053, -449, false}, // 10^-116 {0x964e858c91ba2655, -422, false}, // 10^-108 {0xdff9772470297ebd, -396, false}, // 10^-100 {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 {0xf8a95fcf88747d94, -343, false}, // 10^-84 {0xb94470938fa89bcf, -316, false}, // 10^-76 {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 {0xcdb02555653131b6, -263, false}, // 10^-60 {0x993fe2c6d07b7fac, -236, false}, // 10^-52 {0xe45c10c42a2b3b06, -210, false}, // 10^-44 {0xaa242499697392d3, -183, false}, // 10^-36 {0xfd87b5f28300ca0e, -157, false}, // 10^-28 {0xbce5086492111aeb, -130, false}, // 10^-20 {0x8cbccc096f5088cc, -103, false}, // 10^-12 {0xd1b71758e219652c, -77, false}, // 10^-4 {0x9c40000000000000, -50, false}, // 10^4 {0xe8d4a51000000000, -24, false}, // 10^12 {0xad78ebc5ac620000, 3, false}, // 10^20 {0x813f3978f8940984, 30, false}, // 10^28 {0xc097ce7bc90715b3, 56, false}, // 10^36 {0x8f7e32ce7bea5c70, 83, false}, // 10^44 {0xd5d238a4abe98068, 109, false}, // 10^52 {0x9f4f2726179a2245, 136, false}, // 10^60 {0xed63a231d4c4fb27, 162, false}, // 10^68 {0xb0de65388cc8ada8, 189, false}, // 10^76 {0x83c7088e1aab65db, 216, false}, // 10^84 {0xc45d1df942711d9a, 242, false}, // 10^92 {0x924d692ca61be758, 269, false}, // 10^100 {0xda01ee641a708dea, 295, false}, // 10^108 {0xa26da3999aef774a, 322, false}, // 10^116 {0xf209787bb47d6b85, 348, false}, // 10^124 {0xb454e4a179dd1877, 375, false}, // 10^132 {0x865b86925b9bc5c2, 402, false}, // 10^140 {0xc83553c5c8965d3d, 428, false}, // 10^148 {0x952ab45cfa97a0b3, 455, false}, // 10^156 {0xde469fbd99a05fe3, 481, false}, // 10^164 {0xa59bc234db398c25, 508, false}, // 10^172 {0xf6c69a72a3989f5c, 534, false}, // 10^180 {0xb7dcbf5354e9bece, 561, false}, // 10^188 {0x88fcf317f22241e2, 588, false}, // 10^196 {0xcc20ce9bd35c78a5, 614, false}, // 10^204 {0x98165af37b2153df, 641, false}, // 10^212 {0xe2a0b5dc971f303a, 667, false}, // 10^220 {0xa8d9d1535ce3b396, 694, false}, // 10^228 {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 {0xbb764c4ca7a44410, 747, false}, // 10^244 {0x8bab8eefb6409c1a, 774, false}, // 10^252 {0xd01fef10a657842c, 800, false}, // 10^260 {0x9b10a4e5e9913129, 827, false}, // 10^268 {0xe7109bfba19c0c9d, 853, false}, // 10^276 {0xac2820d9623bf429, 880, false}, // 10^284 {0x80444b5e7aa7cf85, 907, false}, // 10^292 {0xbf21e44003acdd2d, 933, false}, // 10^300 {0x8e679c2f5e44ff8f, 960, false}, // 10^308 {0xd433179d9c8cb841, 986, false}, // 10^316 {0x9e19db92b4e31ba9, 1013, false}, // 10^324 {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 } // floatBits returns the bits of the float64 that best approximates // the extFloat passed as receiver. Overflow is set to true if // the resulting float64 is ±Inf. func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) { f.Normalize() exp := f.exp + 63 // Exponent too small. if exp < flt.bias+1 { n := flt.bias + 1 - exp f.mant >>= uint(n) exp += n } // Extract 1+flt.mantbits bits from the 64-bit mantissa. mant := f.mant >> (63 - flt.mantbits) if f.mant&(1<<(62-flt.mantbits)) != 0 { // Round up. mant += 1 } // Rounding might have added a bit; shift down. if mant == 2<>= 1 exp++ } // Infinities. if exp-flt.bias >= 1<>uint(-f.exp))<>= uint(-f.exp) f.exp = 0 return *f, *f } expBiased := exp - flt.bias upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} if mant != 1<>(64-32) == 0 { mant <<= 32 exp -= 32 } if mant>>(64-16) == 0 { mant <<= 16 exp -= 16 } if mant>>(64-8) == 0 { mant <<= 8 exp -= 8 } if mant>>(64-4) == 0 { mant <<= 4 exp -= 4 } if mant>>(64-2) == 0 { mant <<= 2 exp -= 2 } if mant>>(64-1) == 0 { mant <<= 1 exp -= 1 } shift = uint(f.exp - exp) f.mant, f.exp = mant, exp return } // Multiply sets f to the product f*g: the result is correctly rounded, // but not normalized. func (f *extFloat) Multiply(g extFloat) { fhi, flo := f.mant>>32, uint64(uint32(f.mant)) ghi, glo := g.mant>>32, uint64(uint32(g.mant)) // Cross products. cross1 := fhi * glo cross2 := flo * ghi // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) // Round up. rem += (1 << 31) f.mant += (rem >> 32) f.exp = f.exp + g.exp + 64 } var uint64pow10 = [...]uint64{ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, } // AssignDecimal sets f to an approximate value mantissa*10^exp. It // reports whether the value represented by f is guaranteed to be the // best approximation of d after being rounded to a float64 or // float32 depending on flt. func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) { const uint64digits = 19 const errorscale = 8 errors := 0 // An upper bound for error, computed in errorscale*ulp. if trunc { // the decimal number was truncated. errors += errorscale / 2 } f.mant = mantissa f.exp = 0 f.neg = neg // Multiply by powers of ten. i := (exp10 - firstPowerOfTen) / stepPowerOfTen if exp10 < firstPowerOfTen || i >= len(powersOfTen) { return false } adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen // We multiply by exp%step if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] { // We can multiply the mantissa exactly. f.mant *= uint64pow10[adjExp] f.Normalize() } else { f.Normalize() f.Multiply(smallPowersOfTen[adjExp]) errors += errorscale / 2 } // We multiply by 10 to the exp - exp%step. f.Multiply(powersOfTen[i]) if errors > 0 { errors += 1 } errors += errorscale / 2 // Normalize shift := f.Normalize() errors <<= shift // Now f is a good approximation of the decimal. // Check whether the error is too large: that is, if the mantissa // is perturbated by the error, the resulting float64 will change. // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. // // In many cases the approximation will be good enough. denormalExp := flt.bias - 63 var extrabits uint if f.exp <= denormalExp { // f.mant * 2^f.exp is smaller than 2^(flt.bias+1). extrabits = 63 - flt.mantbits + 1 + uint(denormalExp-f.exp) } else { extrabits = 63 - flt.mantbits } halfway := uint64(1) << (extrabits - 1) mant_extra := f.mant & (1< expMax: i-- default: break Loop } } // Apply the desired decimal shift on f. It will have exponent // in the desired range. This is multiplication by 10^-exp10. f.Multiply(powersOfTen[i]) return -(firstPowerOfTen + i*stepPowerOfTen), i } // frexp10Many applies a common shift by a power of ten to a, b, c. func frexp10Many(a, b, c *extFloat) (exp10 int) { exp10, i := c.frexp10() a.Multiply(powersOfTen[i]) b.Multiply(powersOfTen[i]) return } // FixedDecimal stores in d the first n significant digits // of the decimal representation of f. It returns false // if it cannot be sure of the answer. func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { if f.mant == 0 { d.nd = 0 d.dp = 0 d.neg = f.neg return true } if n == 0 { panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") } // Multiply by an appropriate power of ten to have a reasonable // number to process. f.Normalize() exp10, _ := f.frexp10() shift := uint(-f.exp) integer := uint32(f.mant >> shift) fraction := f.mant - (uint64(integer) << shift) ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. // Write exactly n digits to d. needed := n // how many digits are left to write. integerDigits := 0 // the number of decimal digits of integer. pow10 := uint64(1) // the power of ten by which f was scaled. for i, pow := 0, uint64(1); i < 20; i++ { if pow > uint64(integer) { integerDigits = i break } pow *= 10 } rest := integer if integerDigits > needed { // the integral part is already large, trim the last digits. pow10 = uint64pow10[integerDigits-needed] integer /= uint32(pow10) rest -= integer * uint32(pow10) } else { rest = 0 } // Write the digits of integer: the digits of rest are omitted. var buf [32]byte pos := len(buf) for v := integer; v > 0; { v1 := v / 10 v -= 10 * v1 pos-- buf[pos] = byte(v + '0') v = v1 } for i := pos; i < len(buf); i++ { d.d[i-pos] = buf[i] } nd := len(buf) - pos d.nd = nd d.dp = integerDigits + exp10 needed -= nd if needed > 0 { if rest != 0 || pow10 != 1 { panic("strconv: internal error, rest != 0 but needed > 0") } // Emit digits for the fractional part. Each time, 10*fraction // fits in a uint64 without overflow. for needed > 0 { fraction *= 10 ε *= 10 // the uncertainty scales as we multiply by ten. if 2*ε > 1<> shift d.d[nd] = byte(digit + '0') fraction -= digit << shift nd++ needed-- } d.nd = nd } // We have written a truncation of f (a numerator / 10^d.dp). The remaining part // can be interpreted as a small number (< 1) to be added to the last digit of the // numerator. // // If rest > 0, the amount is: // (rest< 0 guarantees that pow10 << shift does not overflow a uint64. // // If rest = 0, pow10 == 1 and the amount is // fraction / (1 << shift) // fraction being known with a ±ε uncertainty. // // We pass this information to the rounding routine for adjustment. ok := adjustLastDigitFixed(d, uint64(rest)<= 0; i-- { if d.d[i] != '0' { d.nd = i + 1 break } } return true } // adjustLastDigitFixed assumes d contains the representation of the integral part // of some number, whose fractional part is num / (den << shift). The numerator // num is only known up to an uncertainty of size ε, assumed to be less than // (den << shift)/2. // // It will increase the last digit by one to account for correct rounding, typically // when the fractional part is greater than 1/2, and will return false if ε is such // that no correct answer can be given. func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { if num > den< den< den< (den< den<= 0; i-- { if d.d[i] == '9' { d.nd-- } else { break } } if i < 0 { d.d[0] = '1' d.nd = 1 d.dp++ } else { d.d[i]++ } return true } return false } // ShortestDecimal stores in d the shortest decimal representation of f // which belongs to the open interval (lower, upper), where f is supposed // to lie. It returns false whenever the result is unsure. The implementation // uses the Grisu3 algorithm. func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { if f.mant == 0 { d.nd = 0 d.dp = 0 d.neg = f.neg return true } if f.exp == 0 && *lower == *f && *lower == *upper { // an exact integer. var buf [24]byte n := len(buf) - 1 for v := f.mant; v > 0; { v1 := v / 10 v -= 10 * v1 buf[n] = byte(v + '0') n-- v = v1 } nd := len(buf) - n - 1 for i := 0; i < nd; i++ { d.d[i] = buf[n+1+i] } d.nd, d.dp = nd, nd for d.nd > 0 && d.d[d.nd-1] == '0' { d.nd-- } if d.nd == 0 { d.dp = 0 } d.neg = f.neg return true } upper.Normalize() // Uniformize exponents. if f.exp > upper.exp { f.mant <<= uint(f.exp - upper.exp) f.exp = upper.exp } if lower.exp > upper.exp { lower.mant <<= uint(lower.exp - upper.exp) lower.exp = upper.exp } exp10 := frexp10Many(lower, f, upper) // Take a safety margin due to rounding in frexp10Many, but we lose precision. upper.mant++ lower.mant-- // The shortest representation of f is either rounded up or down, but // in any case, it is a truncation of upper. shift := uint(-upper.exp) integer := uint32(upper.mant >> shift) fraction := upper.mant - (uint64(integer) << shift) // How far we can go down from upper until the result is wrong. allowance := upper.mant - lower.mant // How far we should go to get a very precise result. targetDiff := upper.mant - f.mant // Count integral digits: there are at most 10. var integerDigits int for i, pow := 0, uint64(1); i < 20; i++ { if pow > uint64(integer) { integerDigits = i break } pow *= 10 } for i := 0; i < integerDigits; i++ { pow := uint64pow10[integerDigits-i-1] digit := integer / uint32(pow) d.d[i] = byte(digit + '0') integer -= digit * uint32(pow) // evaluate whether we should stop. if currentDiff := uint64(integer)<> shift) d.d[d.nd] = byte(digit + '0') d.nd++ fraction -= uint64(digit) << shift if fraction < allowance*multiplier { // We are in the admissible range. Note that if allowance is about to // overflow, that is, allowance > 2^64/10, the condition is automatically // true due to the limited range of fraction. return adjustLastDigit(d, fraction, targetDiff*multiplier, allowance*multiplier, 1< maxDiff-ulpBinary { // we went too far return false } if d.nd == 1 && d.d[0] == '0' { // the number has actually reached zero. d.nd = 0 d.dp = 0 } return true }