// asmcheck // Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package codegen import "math" var sink64 [8]float64 func approx(x float64) { // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" // amd64:"ROUNDSD\t[$]2" // s390x:"FIDBR\t[$]6" // arm64:"FRINTPD" // ppc64x:"FRIP" // wasm:"F64Ceil" sink64[0] = math.Ceil(x) // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" // amd64:"ROUNDSD\t[$]1" // s390x:"FIDBR\t[$]7" // arm64:"FRINTMD" // ppc64x:"FRIM" // wasm:"F64Floor" sink64[1] = math.Floor(x) // s390x:"FIDBR\t[$]1" // arm64:"FRINTAD" // ppc64x:"FRIN" sink64[2] = math.Round(x) // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" // amd64:"ROUNDSD\t[$]3" // s390x:"FIDBR\t[$]5" // arm64:"FRINTZD" // ppc64x:"FRIZ" // wasm:"F64Trunc" sink64[3] = math.Trunc(x) // amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41" // amd64:"ROUNDSD\t[$]0" // s390x:"FIDBR\t[$]4" // arm64:"FRINTND" // wasm:"F64Nearest" sink64[4] = math.RoundToEven(x) } func sqrt(x float64) float64 { // amd64:"SQRTSD" // 386/sse2:"SQRTSD" 386/softfloat:-"SQRTD" // arm64:"FSQRTD" // arm/7:"SQRTD" // mips/hardfloat:"SQRTD" mips/softfloat:-"SQRTD" // mips64/hardfloat:"SQRTD" mips64/softfloat:-"SQRTD" // wasm:"F64Sqrt" // ppc64x:"FSQRT" // riscv64: "FSQRTD" return math.Sqrt(x) } func sqrt32(x float32) float32 { // amd64:"SQRTSS" // 386/sse2:"SQRTSS" 386/softfloat:-"SQRTS" // arm64:"FSQRTS" // arm/7:"SQRTF" // mips/hardfloat:"SQRTF" mips/softfloat:-"SQRTF" // mips64/hardfloat:"SQRTF" mips64/softfloat:-"SQRTF" // wasm:"F32Sqrt" // ppc64x:"FSQRTS" // riscv64: "FSQRTS" return float32(math.Sqrt(float64(x))) } // Check that it's using integer registers func abs(x, y float64) { // amd64:"BTRQ\t[$]63" // arm64:"FABSD\t" // s390x:"LPDFR\t",-"MOVD\t" (no integer load/store) // ppc64x:"FABS\t" // riscv64:"FABSD\t" // wasm:"F64Abs" // arm/6:"ABSD\t" // mips64/hardfloat:"ABSD\t" // mips/hardfloat:"ABSD\t" sink64[0] = math.Abs(x) // amd64:"BTRQ\t[$]63","PXOR" (TODO: this should be BTSQ) // s390x:"LNDFR\t",-"MOVD\t" (no integer load/store) // ppc64x:"FNABS\t" sink64[1] = -math.Abs(y) } // Check that it's using integer registers func abs32(x float32) float32 { // s390x:"LPDFR",-"LDEBR",-"LEDBR" (no float64 conversion) return float32(math.Abs(float64(x))) } // Check that it's using integer registers func copysign(a, b, c float64) { // amd64:"BTRQ\t[$]63","ANDQ","ORQ" // s390x:"CPSDR",-"MOVD" (no integer load/store) // ppc64x:"FCPSGN" // riscv64:"FSGNJD" // wasm:"F64Copysign" sink64[0] = math.Copysign(a, b) // amd64:"BTSQ\t[$]63" // s390x:"LNDFR\t",-"MOVD\t" (no integer load/store) // ppc64x:"FCPSGN" // riscv64:"FSGNJD" // arm64:"ORR", -"AND" sink64[1] = math.Copysign(c, -1) // Like math.Copysign(c, -1), but with integer operations. Useful // for platforms that have a copysign opcode to see if it's detected. // s390x:"LNDFR\t",-"MOVD\t" (no integer load/store) sink64[2] = math.Float64frombits(math.Float64bits(a) | 1<<63) // amd64:"ANDQ","ORQ" // s390x:"CPSDR\t",-"MOVD\t" (no integer load/store) // ppc64x:"FCPSGN" // riscv64:"FSGNJD" sink64[3] = math.Copysign(-1, c) } func fma(x, y, z float64) float64 { // amd64/v3:-".*x86HasFMA" // amd64:"VFMADD231SD" // arm/6:"FMULAD" // arm64:"FMADDD" // s390x:"FMADD" // ppc64x:"FMADD" // riscv64:"FMADDD" return math.FMA(x, y, z) } func fms(x, y, z float64) float64 { // riscv64:"FMSUBD" return math.FMA(x, y, -z) } func fnms(x, y, z float64) float64 { // riscv64:"FNMSUBD",-"FNMADDD" return math.FMA(-x, y, z) } func fnma(x, y, z float64) float64 { // riscv64:"FNMADDD",-"FNMSUBD" return math.FMA(x, -y, -z) } func fromFloat64(f64 float64) uint64 { // amd64:"MOVQ\tX.*, [^X].*" // arm64:"FMOVD\tF.*, R.*" // loong64:"MOVV\tF.*, R.*" // ppc64x:"MFVSRD" // mips64/hardfloat:"MOVV\tF.*, R.*" return math.Float64bits(f64+1) + 1 } func fromFloat32(f32 float32) uint32 { // amd64:"MOVL\tX.*, [^X].*" // arm64:"FMOVS\tF.*, R.*" // loong64:"MOVW\tF.*, R.*" // mips64/hardfloat:"MOVW\tF.*, R.*" return math.Float32bits(f32+1) + 1 } func toFloat64(u64 uint64) float64 { // amd64:"MOVQ\t[^X].*, X.*" // arm64:"FMOVD\tR.*, F.*" // loong64:"MOVV\tR.*, F.*" // ppc64x:"MTVSRD" // mips64/hardfloat:"MOVV\tR.*, F.*" return math.Float64frombits(u64+1) + 1 } func toFloat32(u32 uint32) float32 { // amd64:"MOVL\t[^X].*, X.*" // arm64:"FMOVS\tR.*, F.*" // loong64:"MOVW\tR.*, F.*" // mips64/hardfloat:"MOVW\tR.*, F.*" return math.Float32frombits(u32+1) + 1 } // Test that comparisons with constants converted to float // are evaluated at compile-time func constantCheck64() bool { // amd64:"(MOVB\t[$]0)|(XORL\t[A-Z][A-Z0-9]+, [A-Z][A-Z0-9]+)",-"FCMP",-"MOVB\t[$]1" // s390x:"MOV(B|BZ|D)\t[$]0,",-"FCMPU",-"MOV(B|BZ|D)\t[$]1," return 0.5 == float64(uint32(1)) || 1.5 > float64(uint64(1<<63)) } func constantCheck32() bool { // amd64:"MOV(B|L)\t[$]1",-"FCMP",-"MOV(B|L)\t[$]0" // s390x:"MOV(B|BZ|D)\t[$]1,",-"FCMPU",-"MOV(B|BZ|D)\t[$]0," return float32(0.5) <= float32(int64(1)) && float32(1.5) >= float32(int32(-1<<31)) } // Test that integer constants are converted to floating point constants // at compile-time func constantConvert32(x float32) float32 { // amd64:"MOVSS\t[$]f32.3f800000\\(SB\\)" // s390x:"FMOVS\t[$]f32.3f800000\\(SB\\)" // ppc64x/power8:"FMOVS\t[$]f32.3f800000\\(SB\\)" // ppc64x/power9:"FMOVS\t[$]f32.3f800000\\(SB\\)" // ppc64x/power10:"XXSPLTIDP\t[$]1065353216, VS0" // arm64:"FMOVS\t[$]\\(1.0\\)" if x > math.Float32frombits(0x3f800000) { return -x } return x } func constantConvertInt32(x uint32) uint32 { // amd64:-"MOVSS" // s390x:-"FMOVS" // ppc64x:-"FMOVS" // arm64:-"FMOVS" if x > math.Float32bits(1) { return -x } return x } func nanGenerate64() float64 { // Test to make sure we don't generate a NaN while constant propagating. // See issue 36400. zero := 0.0 // amd64:-"DIVSD" inf := 1 / zero // +inf. We can constant propagate this one. negone := -1.0 // amd64:"DIVSD" z0 := zero / zero // amd64:"MULSD" z1 := zero * inf // amd64:"SQRTSD" z2 := math.Sqrt(negone) return z0 + z1 + z2 } func nanGenerate32() float32 { zero := float32(0.0) // amd64:-"DIVSS" inf := 1 / zero // +inf. We can constant propagate this one. // amd64:"DIVSS" z0 := zero / zero // amd64:"MULSS" z1 := zero * inf return z0 + z1 }