// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls // The handshake goroutine reads handshake messages from the record processor // and outputs messages to be written on another channel. It updates the record // processor with the state of the connection via the control channel. In the // case of handshake messages that need synchronous processing (because they // affect the handling of the next record) the record processor knows about // them and either waits for a control message (Finished) or includes a reply // channel in the message (ChangeCipherSpec). import ( "crypto/hmac"; "crypto/rc4"; "crypto/rsa"; "crypto/sha1"; "crypto/subtle"; "io"; ) type cipherSuite struct { id uint16; // The number of this suite on the wire. hashLength, cipherKeyLength int; // TODO(agl): need a method to create the cipher and hash interfaces. } var cipherSuites = []cipherSuite{ cipherSuite{TLS_RSA_WITH_RC4_128_SHA, 20, 16}, } // A serverHandshake performs the server side of the TLS 1.1 handshake protocol. type serverHandshake struct { writeChan chan<- interface{}; controlChan chan<- interface{}; msgChan <-chan interface{}; config *Config; } func (h *serverHandshake) loop(writeChan chan<- interface{}, controlChan chan<- interface{}, msgChan <-chan interface{}, config *Config) { h.writeChan = writeChan; h.controlChan = controlChan; h.msgChan = msgChan; h.config = config; defer close(writeChan); defer close(controlChan); clientHello, ok := h.readHandshakeMsg().(*clientHelloMsg); if !ok { h.error(alertUnexpectedMessage); return; } major, minor, ok := mutualVersion(clientHello.major, clientHello.minor); if !ok { h.error(alertProtocolVersion); return; } finishedHash := newFinishedHash(); finishedHash.Write(clientHello.marshal()); hello := new(serverHelloMsg); // We only support a single ciphersuite so we look for it in the list // of client supported suites. // // TODO(agl): Add additional cipher suites. var suite *cipherSuite; for _, id := range clientHello.cipherSuites { for _, supported := range cipherSuites { if supported.id == id { suite = &supported; break; } } } foundCompression := false; // We only support null compression, so check that the client offered it. for _, compression := range clientHello.compressionMethods { if compression == compressionNone { foundCompression = true; break; } } if suite == nil || !foundCompression { h.error(alertHandshakeFailure); return; } hello.major = major; hello.minor = minor; hello.cipherSuite = suite.id; currentTime := uint32(config.Time()); hello.random = make([]byte, 32); hello.random[0] = byte(currentTime >> 24); hello.random[1] = byte(currentTime >> 16); hello.random[2] = byte(currentTime >> 8); hello.random[3] = byte(currentTime); _, err := io.ReadFull(config.Rand, hello.random[4:len(hello.random)]); if err != nil { h.error(alertInternalError); return; } hello.compressionMethod = compressionNone; finishedHash.Write(hello.marshal()); writeChan <- writerSetVersion{major, minor}; writeChan <- hello; if len(config.Certificates) == 0 { h.error(alertInternalError); return; } certMsg := new(certificateMsg); certMsg.certificates = config.Certificates[0].Certificate; finishedHash.Write(certMsg.marshal()); writeChan <- certMsg; helloDone := new(serverHelloDoneMsg); finishedHash.Write(helloDone.marshal()); writeChan <- helloDone; ckx, ok := h.readHandshakeMsg().(*clientKeyExchangeMsg); if !ok { h.error(alertUnexpectedMessage); return; } finishedHash.Write(ckx.marshal()); preMasterSecret := make([]byte, 48); _, err = io.ReadFull(config.Rand, preMasterSecret[2:len(preMasterSecret)]); if err != nil { h.error(alertInternalError); return; } err = rsa.DecryptPKCS1v15SessionKey(config.Rand, config.Certificates[0].PrivateKey, ckx.ciphertext, preMasterSecret); if err != nil { h.error(alertHandshakeFailure); return; } // We don't check the version number in the premaster secret. For one, // by checking it, we would leak information about the validity of the // encrypted pre-master secret. Secondly, it provides only a small // benefit against a downgrade attack and some implementations send the // wrong version anyway. See the discussion at the end of section // 7.4.7.1 of RFC 4346. masterSecret, clientMAC, serverMAC, clientKey, serverKey := keysFromPreMasterSecret11(preMasterSecret, clientHello.random, hello.random, suite.hashLength, suite.cipherKeyLength); _, ok = h.readHandshakeMsg().(changeCipherSpec); if !ok { h.error(alertUnexpectedMessage); return; } cipher, _ := rc4.NewCipher(clientKey); controlChan <- &newCipherSpec{cipher, hmac.New(sha1.New(), clientMAC)}; clientFinished, ok := h.readHandshakeMsg().(*finishedMsg); if !ok { h.error(alertUnexpectedMessage); return; } verify := finishedHash.clientSum(masterSecret); if len(verify) != len(clientFinished.verifyData) || subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 { h.error(alertHandshakeFailure); return; } controlChan <- ConnectionState{true, "TLS_RSA_WITH_RC4_128_SHA", 0}; finishedHash.Write(clientFinished.marshal()); cipher2, _ := rc4.NewCipher(serverKey); writeChan <- writerChangeCipherSpec{cipher2, hmac.New(sha1.New(), serverMAC)}; finished := new(finishedMsg); finished.verifyData = finishedHash.serverSum(masterSecret); writeChan <- finished; writeChan <- writerEnableApplicationData{}; for { _, ok := h.readHandshakeMsg().(*clientHelloMsg); if !ok { h.error(alertUnexpectedMessage); return; } // We reject all renegotication requests. writeChan <- alert{alertLevelWarning, alertNoRenegotiation}; } } func (h *serverHandshake) readHandshakeMsg() interface{} { v := <-h.msgChan; if closed(h.msgChan) { // If the channel closed then the processor received an error // from the peer and we don't want to echo it back to them. h.msgChan = nil; return 0; } if _, ok := v.(alert); ok { // We got an alert from the processor. We forward to the writer // and shutdown. h.writeChan <- v; h.msgChan = nil; return 0; } return v; } func (h *serverHandshake) error(e alertType) { if h.msgChan != nil { // If we didn't get an error from the processor, then we need // to tell it about the error. h.controlChan <- ConnectionState{false, "", e}; close(h.controlChan); go func() { for _ = range h.msgChan { } }(); h.writeChan <- alert{alertLevelError, e}; } }