// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector. #include "runtime.h" #include "arch_GOARCH.h" #include "malloc.h" #include "stack.h" #include "race.h" enum { Debug = 0, DebugMark = 0, // run second pass to check mark DataBlock = 8*1024, // Four bits per word (see #defines below). wordsPerBitmapWord = sizeof(void*)*8/4, bitShift = sizeof(void*)*8/4, }; // Bits in per-word bitmap. // #defines because enum might not be able to hold the values. // // Each word in the bitmap describes wordsPerBitmapWord words // of heap memory. There are 4 bitmap bits dedicated to each heap word, // so on a 64-bit system there is one bitmap word per 16 heap words. // The bits in the word are packed together by type first, then by // heap location, so each 64-bit bitmap word consists of, from top to bottom, // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. // This layout makes it easier to iterate over the bits of a given type. // // The bitmap starts at mheap.arena_start and extends *backward* from // there. On a 64-bit system the off'th word in the arena is tracked by // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, // the only difference is that the divisor is 8.) // // To pull out the bits corresponding to a given pointer p, we use: // // off = p - (uintptr*)mheap.arena_start; // word offset // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; // shift = off % wordsPerBitmapWord // bits = *b >> shift; // /* then test bits & bitAllocated, bits & bitMarked, etc. */ // #define bitAllocated ((uintptr)1<<(bitShift*0)) #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) // Holding worldsema grants an M the right to try to stop the world. // The procedure is: // // runtime·semacquire(&runtime·worldsema); // m->gcing = 1; // runtime·stoptheworld(); // // ... do stuff ... // // m->gcing = 0; // runtime·semrelease(&runtime·worldsema); // runtime·starttheworld(); // uint32 runtime·worldsema = 1; static int32 gctrace; typedef struct Workbuf Workbuf; struct Workbuf { LFNode node; // must be first uintptr nobj; byte *obj[512-(sizeof(LFNode)+sizeof(uintptr))/sizeof(byte*)]; }; typedef struct Finalizer Finalizer; struct Finalizer { void (*fn)(void*); void *arg; uintptr nret; }; typedef struct FinBlock FinBlock; struct FinBlock { FinBlock *alllink; FinBlock *next; int32 cnt; int32 cap; Finalizer fin[1]; }; extern byte data[]; extern byte etext[]; extern byte ebss[]; static G *fing; static FinBlock *finq; // list of finalizers that are to be executed static FinBlock *finc; // cache of free blocks static FinBlock *allfin; // list of all blocks static Lock finlock; static int32 fingwait; static void runfinq(void); static Workbuf* getempty(Workbuf*); static Workbuf* getfull(Workbuf*); static void putempty(Workbuf*); static Workbuf* handoff(Workbuf*); typedef struct GcRoot GcRoot; struct GcRoot { byte *p; uintptr n; }; static struct { uint64 full; // lock-free list of full blocks uint64 empty; // lock-free list of empty blocks byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait uint32 nproc; volatile uint32 nwait; volatile uint32 ndone; volatile uint32 debugmarkdone; Note alldone; ParFor *markfor; ParFor *sweepfor; Lock; byte *chunk; uintptr nchunk; GcRoot *roots; uint32 nroot; uint32 rootcap; } work; // scanblock scans a block of n bytes starting at pointer b for references // to other objects, scanning any it finds recursively until there are no // unscanned objects left. Instead of using an explicit recursion, it keeps // a work list in the Workbuf* structures and loops in the main function // body. Keeping an explicit work list is easier on the stack allocator and // more efficient. static void scanblock(byte *b, uintptr n) { byte *obj, *arena_start, *arena_used, *p; void **vp; uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc; MSpan *s; PageID k; void **wp; Workbuf *wbuf; bool keepworking; if((intptr)n < 0) { runtime·printf("scanblock %p %D\n", b, (int64)n); runtime·throw("scanblock"); } // Memory arena parameters. arena_start = runtime·mheap.arena_start; arena_used = runtime·mheap.arena_used; nproc = work.nproc; wbuf = nil; // current work buffer wp = nil; // storage for next queued pointer (write pointer) nobj = 0; // number of queued objects // Scanblock helpers pass b==nil. // Procs needs to return to make more // calls to scanblock. But if work.nproc==1 then // might as well process blocks as soon as we // have them. keepworking = b == nil || work.nproc == 1; // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } for(;;) { // Each iteration scans the block b of length n, queueing pointers in // the work buffer. if(Debug > 1) runtime·printf("scanblock %p %D\n", b, (int64)n); vp = (void**)b; n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */ for(i=0; i= arena_used) continue; // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { obj = (byte*)obj - (shift-j)*PtrSize; shift = j; bits = xbits>>shift; goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) k = (uintptr)obj>>PageShift; x = k; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime·mheap.map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; size = runtime·class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; found: // If another proc wants a pointer, give it some. if(work.nwait > 0 && nobj > 4 && work.full == 0) { wbuf->nobj = nobj; wbuf = handoff(wbuf); nobj = wbuf->nobj; wp = wbuf->obj + nobj; } // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) continue; if(nproc == 1) *bitp |= bitMarked<= nelem(wbuf->obj)) { if(wbuf != nil) wbuf->nobj = nobj; wbuf = getempty(wbuf); wp = wbuf->obj; nobj = 0; } *wp++ = obj; nobj++; continue_obj:; } // Done scanning [b, b+n). Prepare for the next iteration of // the loop by setting b and n to the parameters for the next block. // Fetch b from the work buffer. if(nobj == 0) { if(!keepworking) { if(wbuf) putempty(wbuf); return; } // Emptied our buffer: refill. wbuf = getfull(wbuf); if(wbuf == nil) return; nobj = wbuf->nobj; wp = wbuf->obj + wbuf->nobj; } b = *--wp; nobj--; // Ask span about size class. // (Manually inlined copy of MHeap_Lookup.) x = (uintptr)b>>PageShift; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime·mheap.map[x]; if(s->sizeclass == 0) n = s->npages<sizeclass]; } } // debug_scanblock is the debug copy of scanblock. // it is simpler, slower, single-threaded, recursive, // and uses bitSpecial as the mark bit. static void debug_scanblock(byte *b, uintptr n) { byte *obj, *p; void **vp; uintptr size, *bitp, bits, shift, i, xbits, off; MSpan *s; if(!DebugMark) runtime·throw("debug_scanblock without DebugMark"); if((intptr)n < 0) { runtime·printf("debug_scanblock %p %D\n", b, (int64)n); runtime·throw("debug_scanblock"); } // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } vp = (void**)b; n /= PtrSize; for(i=0; i= runtime·mheap.arena_used) continue; // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Consult span table to find beginning. s = runtime·MHeap_LookupMaybe(&runtime·mheap, obj); if(s == nil) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; size = (uintptr)s->npages<= (byte*)s->limit) continue; size = runtime·class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // If not allocated or already marked, done. if((bits & bitAllocated) == 0 || (bits & bitSpecial) != 0) // NOTE: bitSpecial not bitMarked continue; *bitp |= bitSpecial<node); b = (Workbuf*)runtime·lfstackpop(&work.empty); if(b == nil) { // Need to allocate. runtime·lock(&work); if(work.nchunk < sizeof *b) { work.nchunk = 1<<20; work.chunk = runtime·SysAlloc(work.nchunk); } b = (Workbuf*)work.chunk; work.chunk += sizeof *b; work.nchunk -= sizeof *b; runtime·unlock(&work); } b->nobj = 0; return b; } static void putempty(Workbuf *b) { runtime·lfstackpush(&work.empty, &b->node); } // Get a full work buffer off the work.full list, or return nil. static Workbuf* getfull(Workbuf *b) { int32 i; if(b != nil) runtime·lfstackpush(&work.empty, &b->node); b = (Workbuf*)runtime·lfstackpop(&work.full); if(b != nil || work.nproc == 1) return b; runtime·xadd(&work.nwait, +1); for(i=0;; i++) { if(work.full != 0) { runtime·xadd(&work.nwait, -1); b = (Workbuf*)runtime·lfstackpop(&work.full); if(b != nil) return b; runtime·xadd(&work.nwait, +1); } if(work.nwait == work.nproc) return nil; if(i < 10) { m->gcstats.nprocyield++; runtime·procyield(20); } else if(i < 20) { m->gcstats.nosyield++; runtime·osyield(); } else { m->gcstats.nsleep++; runtime·usleep(100); } } } static Workbuf* handoff(Workbuf *b) { int32 n; Workbuf *b1; // Make new buffer with half of b's pointers. b1 = getempty(nil); n = b->nobj/2; b->nobj -= n; b1->nobj = n; runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); m->gcstats.nhandoff++; m->gcstats.nhandoffcnt += n; // Put b on full list - let first half of b get stolen. runtime·lfstackpush(&work.full, &b->node); return b1; } static void addroot(byte *p, uintptr n) { uint32 cap; GcRoot *new; if(work.nroot >= work.rootcap) { cap = PageSize/sizeof(GcRoot); if(cap < 2*work.rootcap) cap = 2*work.rootcap; new = (GcRoot*)runtime·SysAlloc(cap*sizeof(GcRoot)); if(work.roots != nil) { runtime·memmove(new, work.roots, work.rootcap*sizeof(GcRoot)); runtime·SysFree(work.roots, work.rootcap*sizeof(GcRoot)); } work.roots = new; work.rootcap = cap; } work.roots[work.nroot].p = p; work.roots[work.nroot].n = n; work.nroot++; } static void addstackroots(G *gp) { M *mp; int32 n; Stktop *stk; byte *sp, *guard; stk = (Stktop*)gp->stackbase; guard = (byte*)gp->stackguard; if(gp == g) { // Scanning our own stack: start at &gp. sp = (byte*)&gp; } else if((mp = gp->m) != nil && mp->helpgc) { // gchelper's stack is in active use and has no interesting pointers. return; } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). sp = (byte*)gp->sched.sp; // The exception is that if the goroutine is about to enter or might // have just exited a system call, it may be executing code such // as schedlock and may have needed to start a new stack segment. // Use the stack segment and stack pointer at the time of // the system call instead, since that won't change underfoot. if(gp->gcstack != (uintptr)nil) { stk = (Stktop*)gp->gcstack; sp = (byte*)gp->gcsp; guard = (byte*)gp->gcguard; } } n = 0; while(stk) { if(sp < guard-StackGuard || (byte*)stk < sp) { runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); runtime·throw("scanstack"); } addroot(sp, (byte*)stk - sp); sp = (byte*)stk->gobuf.sp; guard = stk->stackguard; stk = (Stktop*)stk->stackbase; n++; } } static void addfinroots(void *v) { uintptr size; size = 0; if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v)) runtime·throw("mark - finalizer inconsistency"); // do not mark the finalizer block itself. just mark the things it points at. addroot(v, size); } static void addroots(void) { G *gp; FinBlock *fb; byte *p; MSpan *s, **allspans; uint32 spanidx; work.nroot = 0; // mark data+bss. for(p=data; pstate == MSpanInUse) { switch(s->types.compression) { case MTypes_Empty: case MTypes_Single: break; case MTypes_Words: case MTypes_Bytes: addroot((byte*)&s->types.data, sizeof(void*)); break; } } } for(gp=runtime·allg; gp!=nil; gp=gp->alllink) { switch(gp->status){ default: runtime·printf("unexpected G.status %d\n", gp->status); runtime·throw("mark - bad status"); case Gdead: break; case Grunning: if(gp != g) runtime·throw("mark - world not stopped"); addstackroots(gp); break; case Grunnable: case Gsyscall: case Gwaiting: addstackroots(gp); break; } } runtime·walkfintab(addfinroots); for(fb=allfin; fb; fb=fb->alllink) addroot((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0])); } static bool handlespecial(byte *p, uintptr size) { void (*fn)(void*); uintptr nret; FinBlock *block; Finalizer *f; if(!runtime·getfinalizer(p, true, &fn, &nret)) { runtime·setblockspecial(p, false); runtime·MProf_Free(p, size); return false; } runtime·lock(&finlock); if(finq == nil || finq->cnt == finq->cap) { if(finc == nil) { finc = runtime·SysAlloc(PageSize); finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; finc->alllink = allfin; allfin = finc; } block = finc; finc = block->next; block->next = finq; finq = block; } f = &finq->fin[finq->cnt]; finq->cnt++; f->fn = fn; f->nret = nret; f->arg = p; runtime·unlock(&finlock); return true; } // Sweep frees or collects finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. static void sweepspan(ParFor *desc, uint32 idx) { int32 cl, n, npages; uintptr size; byte *p; MCache *c; byte *arena_start; MLink head, *end; int32 nfree; byte *type_data; byte compression; uintptr type_data_inc; MSpan *s; USED(&desc); s = runtime·mheap.allspans[idx]; // Stamp newly unused spans. The scavenger will use that // info to potentially give back some pages to the OS. if(s->state == MSpanFree && s->unusedsince == 0) s->unusedsince = runtime·nanotime(); if(s->state != MSpanInUse) return; arena_start = runtime·mheap.arena_start; p = (byte*)(s->start << PageShift); cl = s->sizeclass; size = s->elemsize; if(cl == 0) { n = 1; } else { // Chunk full of small blocks. npages = runtime·class_to_allocnpages[cl]; n = (npages << PageShift) / size; } nfree = 0; end = &head; c = m->mcache; type_data = (byte*)s->types.data; type_data_inc = sizeof(uintptr); compression = s->types.compression; switch(compression) { case MTypes_Bytes: type_data += 8*sizeof(uintptr); type_data_inc = 1; break; } // Sweep through n objects of given size starting at p. // This thread owns the span now, so it can manipulate // the block bitmap without atomic operations. for(; n > 0; n--, p += size, type_data+=type_data_inc) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & bitAllocated) == 0) continue; if((bits & bitMarked) != 0) { if(DebugMark) { if(!(bits & bitSpecial)) runtime·printf("found spurious mark on %p\n", p); *bitp &= ~(bitSpecial<local_alloc -= size; c->local_nfree++; } else { // Free small object. switch(compression) { case MTypes_Words: *(uintptr*)type_data = 0; break; case MTypes_Bytes: *(byte*)type_data = 0; break; } if(size > sizeof(uintptr)) ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" end->next = (MLink*)p; end = (MLink*)p; nfree++; } } if(nfree) { c->local_by_size[cl].nfree += nfree; c->local_alloc -= size * nfree; c->local_nfree += nfree; c->local_cachealloc -= nfree * size; c->local_objects -= nfree; runtime·MCentral_FreeSpan(&runtime·mheap.central[cl], s, nfree, head.next, end); } } void runtime·gchelper(void) { // parallel mark for over gc roots runtime·parfordo(work.markfor); // help other threads scan secondary blocks scanblock(nil, 0); if(DebugMark) { // wait while the main thread executes mark(debug_scanblock) while(runtime·atomicload(&work.debugmarkdone) == 0) runtime·usleep(10); } runtime·parfordo(work.sweepfor); if(runtime·xadd(&work.ndone, +1) == work.nproc-1) runtime·notewakeup(&work.alldone); } // Initialized from $GOGC. GOGC=off means no gc. // // Next gc is after we've allocated an extra amount of // memory proportional to the amount already in use. // If gcpercent=100 and we're using 4M, we'll gc again // when we get to 8M. This keeps the gc cost in linear // proportion to the allocation cost. Adjusting gcpercent // just changes the linear constant (and also the amount of // extra memory used). static int32 gcpercent = -2; static void stealcache(void) { M *m; for(m=runtime·allm; m; m=m->alllink) runtime·MCache_ReleaseAll(m->mcache); } static void cachestats(GCStats *stats) { M *m; MCache *c; int32 i; uint64 stacks_inuse; uint64 stacks_sys; uint64 *src, *dst; if(stats) runtime·memclr((byte*)stats, sizeof(*stats)); stacks_inuse = 0; stacks_sys = 0; for(m=runtime·allm; m; m=m->alllink) { c = m->mcache; runtime·purgecachedstats(c); stacks_inuse += m->stackalloc->inuse; stacks_sys += m->stackalloc->sys; if(stats) { src = (uint64*)&m->gcstats; dst = (uint64*)stats; for(i=0; igcstats, sizeof(m->gcstats)); } for(i=0; ilocal_by_size); i++) { mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; c->local_by_size[i].nmalloc = 0; mstats.by_size[i].nfree += c->local_by_size[i].nfree; c->local_by_size[i].nfree = 0; } } mstats.stacks_inuse = stacks_inuse; mstats.stacks_sys = stacks_sys; } void runtime·gc(int32 force) { int64 t0, t1, t2, t3; uint64 heap0, heap1, obj0, obj1; byte *p; GCStats stats; M *m1; uint32 i; // The atomic operations are not atomic if the uint64s // are not aligned on uint64 boundaries. This has been // a problem in the past. if((((uintptr)&work.empty) & 7) != 0) runtime·throw("runtime: gc work buffer is misaligned"); // The gc is turned off (via enablegc) until // the bootstrap has completed. // Also, malloc gets called in the guts // of a number of libraries that might be // holding locks. To avoid priority inversion // problems, don't bother trying to run gc // while holding a lock. The next mallocgc // without a lock will do the gc instead. if(!mstats.enablegc || m->locks > 0 || runtime·panicking) return; if(gcpercent == -2) { // first time through p = runtime·getenv("GOGC"); if(p == nil || p[0] == '\0') gcpercent = 100; else if(runtime·strcmp(p, (byte*)"off") == 0) gcpercent = -1; else gcpercent = runtime·atoi(p); p = runtime·getenv("GOGCTRACE"); if(p != nil) gctrace = runtime·atoi(p); } if(gcpercent < 0) return; runtime·semacquire(&runtime·worldsema); if(!force && mstats.heap_alloc < mstats.next_gc) { runtime·semrelease(&runtime·worldsema); return; } t0 = runtime·nanotime(); m->gcing = 1; runtime·stoptheworld(); for(m1=runtime·allm; m1; m1=m1->alllink) runtime·settype_flush(m1, false); heap0 = 0; obj0 = 0; if(gctrace) { cachestats(nil); heap0 = mstats.heap_alloc; obj0 = mstats.nmalloc - mstats.nfree; } work.nwait = 0; work.ndone = 0; work.debugmarkdone = 0; work.nproc = runtime·gcprocs(); addroots(); m->locks++; // disable gc during mallocs in parforalloc if(work.markfor == nil) work.markfor = runtime·parforalloc(MaxGcproc); runtime·parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot); if(work.sweepfor == nil) work.sweepfor = runtime·parforalloc(MaxGcproc); runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap.nspan, nil, true, sweepspan); m->locks--; if(work.nproc > 1) { runtime·noteclear(&work.alldone); runtime·helpgc(work.nproc); } runtime·parfordo(work.markfor); scanblock(nil, 0); if(DebugMark) { for(i=0; i 1) runtime·notesleep(&work.alldone); stats.nprocyield += work.sweepfor->nprocyield; stats.nosyield += work.sweepfor->nosyield; stats.nsleep += work.sweepfor->nsleep; mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; m->gcing = 0; if(finq != nil) { m->locks++; // disable gc during the mallocs in newproc // kick off or wake up goroutine to run queued finalizers if(fing == nil) fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc); else if(fingwait) { fingwait = 0; runtime·ready(fing); } m->locks--; } heap1 = mstats.heap_alloc; obj1 = mstats.nmalloc - mstats.nfree; t3 = runtime·nanotime(); mstats.last_gc = t3; mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; mstats.pause_total_ns += t3 - t0; mstats.numgc++; if(mstats.debuggc) runtime·printf("pause %D\n", t3-t0); if(gctrace) { runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects," " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000, heap0>>20, heap1>>20, obj0, obj1, mstats.nmalloc, mstats.nfree, stats.nhandoff, stats.nhandoffcnt, work.sweepfor->nsteal, work.sweepfor->nstealcnt, stats.nprocyield, stats.nosyield, stats.nsleep); } runtime·MProf_GC(); runtime·semrelease(&runtime·worldsema); runtime·starttheworld(); // give the queued finalizers, if any, a chance to run if(finq != nil) runtime·gosched(); if(gctrace > 1 && !force) runtime·gc(1); } void runtime·ReadMemStats(MStats *stats) { // Have to acquire worldsema to stop the world, // because stoptheworld can only be used by // one goroutine at a time, and there might be // a pending garbage collection already calling it. runtime·semacquire(&runtime·worldsema); m->gcing = 1; runtime·stoptheworld(); cachestats(nil); *stats = mstats; m->gcing = 0; runtime·semrelease(&runtime·worldsema); runtime·starttheworld(); } static void runfinq(void) { Finalizer *f; FinBlock *fb, *next; byte *frame; uint32 framesz, framecap, i; if(raceenabled) runtime·racefingo(); frame = nil; framecap = 0; for(;;) { // There's no need for a lock in this section // because it only conflicts with the garbage // collector, and the garbage collector only // runs when everyone else is stopped, and // runfinq only stops at the gosched() or // during the calls in the for loop. fb = finq; finq = nil; if(fb == nil) { fingwait = 1; runtime·park(nil, nil, "finalizer wait"); continue; } for(; fb; fb=next) { next = fb->next; for(i=0; icnt; i++) { f = &fb->fin[i]; framesz = sizeof(uintptr) + f->nret; if(framecap < framesz) { runtime·free(frame); frame = runtime·mal(framesz); framecap = framesz; } *(void**)frame = f->arg; reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret); f->fn = nil; f->arg = nil; } fb->cnt = 0; fb->next = finc; finc = fb; } runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible } } // mark the block at v of size n as allocated. // If noptr is true, mark it as having no pointers. void runtime·markallocated(void *v, uintptr n, bool noptr) { uintptr *b, obits, bits, off, shift; if(0) runtime·printf("markallocated %p+%p\n", v, n); if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) return; // not allocated, so okay off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; if((bits & bitAllocated) != 0) { runtime·printf("checkfreed %p+%p: off=%p have=%p\n", v, n, off, bits & bitMask); runtime·throw("checkfreed: not freed"); } } // mark the span of memory at v as having n blocks of the given size. // if leftover is true, there is left over space at the end of the span. void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) { uintptr *b, off, shift; byte *p; if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markspan: bad pointer"); p = v; if(leftover) // mark a boundary just past end of last block too n++; for(; n-- > 0; p += size) { // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) runtime·throw("markspan: bad pointer"); p = v; off = p - (uintptr*)runtime·mheap.arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime·throw("markspan: unaligned pointer"); b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime·throw("unmarkspan: unaligned length"); // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. n /= wordsPerBitmapWord; while(n-- > 0) *b-- = 0; } bool runtime·blockspecial(void *v) { uintptr *b, off, shift; if(DebugMark) return true; off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; return (*b & (bitSpecial<arena_used - h->arena_start) / wordsPerBitmapWord; n = (n+bitmapChunk-1) & ~(bitmapChunk-1); if(h->bitmap_mapped >= n) return; runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped); h->bitmap_mapped = n; }