// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Software floating point interpretation of ARM 7500 FP instructions. // The interpretation is not bit compatible with the 7500. // It uses true little-endian doubles, while the 7500 used mixed-endian. package runtime import "unsafe" const ( _CPSR = 14 _FLAGS_N = 1 << 31 _FLAGS_Z = 1 << 30 _FLAGS_C = 1 << 29 _FLAGS_V = 1 << 28 ) var fptrace = 0 func fabort() { throw("unsupported floating point instruction") } func fputf(reg uint32, val uint32) { _g_ := getg() _g_.m.freglo[reg] = val } func fputd(reg uint32, val uint64) { _g_ := getg() _g_.m.freglo[reg] = uint32(val) _g_.m.freghi[reg] = uint32(val >> 32) } func fgetd(reg uint32) uint64 { _g_ := getg() return uint64(_g_.m.freglo[reg]) | uint64(_g_.m.freghi[reg])<<32 } func fprintregs() { _g_ := getg() for i := range _g_.m.freglo { print("\tf", i, ":\t", hex(_g_.m.freghi[i]), " ", hex(_g_.m.freglo[i]), "\n") } } func fstatus(nan bool, cmp int32) uint32 { if nan { return _FLAGS_C | _FLAGS_V } if cmp == 0 { return _FLAGS_Z | _FLAGS_C } if cmp < 0 { return _FLAGS_N } return _FLAGS_C } // conditions array record the required CPSR cond field for the // first 5 pairs of conditional execution opcodes // higher 4 bits are must set, lower 4 bits are must clear var conditions = [10 / 2]uint32{ 0 / 2: _FLAGS_Z>>24 | 0, // 0: EQ (Z set), 1: NE (Z clear) 2 / 2: _FLAGS_C>>24 | 0, // 2: CS/HS (C set), 3: CC/LO (C clear) 4 / 2: _FLAGS_N>>24 | 0, // 4: MI (N set), 5: PL (N clear) 6 / 2: _FLAGS_V>>24 | 0, // 6: VS (V set), 7: VC (V clear) 8 / 2: _FLAGS_C>>24 | _FLAGS_Z>>28, } const _FAULT = 0x80000000 // impossible PC offset // returns number of words that the fp instruction // is occupying, 0 if next instruction isn't float. func stepflt(pc *uint32, regs *[15]uint32) uint32 { var i, opc, regd, regm, regn, cpsr uint32 // m is locked in vlop_arm.s, so g.m cannot change during this function call, // so caching it in a local variable is safe. m := getg().m i = *pc if fptrace > 0 { print("stepflt ", pc, " ", hex(i), " (cpsr ", hex(regs[_CPSR]>>28), ")\n") } opc = i >> 28 if opc == 14 { // common case first goto execute } cpsr = regs[_CPSR] >> 28 switch opc { case 0, 1, 2, 3, 4, 5, 6, 7, 8, 9: if cpsr&(conditions[opc/2]>>4) == conditions[opc/2]>>4 && cpsr&(conditions[opc/2]&0xf) == 0 { if opc&1 != 0 { return 1 } } else { if opc&1 == 0 { return 1 } } case 10, 11: // GE (N == V), LT (N != V) if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) { if opc&1 != 0 { return 1 } } else { if opc&1 == 0 { return 1 } } case 12, 13: // GT (N == V and Z == 0), LE (N != V or Z == 1) if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) && cpsr&(_FLAGS_Z>>28) == 0 { if opc&1 != 0 { return 1 } } else { if opc&1 == 0 { return 1 } } case 14: // AL // ok case 15: // shouldn't happen return 0 } if fptrace > 0 { print("conditional ", hex(opc), " (cpsr ", hex(cpsr), ") pass\n") } i = 0xe<<28 | i&(1<<28-1) execute: // special cases if i&0xfffff000 == 0xe59fb000 { // load r11 from pc-relative address. // might be part of a floating point move // (or might not, but no harm in simulating // one instruction too many). addr := (*[1]uint32)(add(unsafe.Pointer(pc), uintptr(i&0xfff+8))) regs[11] = addr[0] if fptrace > 0 { print("*** cpu R[11] = *(", addr, ") ", hex(regs[11]), "\n") } return 1 } if i == 0xe08fb00b { // add pc to r11 // might be part of a PIC floating point move // (or might not, but again no harm done). regs[11] += uint32(uintptr(unsafe.Pointer(pc))) + 8 if fptrace > 0 { print("*** cpu R[11] += pc ", hex(regs[11]), "\n") } return 1 } if i&0xfffffff0 == 0xe08bb000 { r := i & 0xf // add r to r11. // might be part of a large offset address calculation // (or might not, but again no harm done). regs[11] += regs[r] if fptrace > 0 { print("*** cpu R[11] += R[", r, "] ", hex(regs[11]), "\n") } return 1 } if i == 0xeef1fa10 { regs[_CPSR] = regs[_CPSR]&0x0fffffff | m.fflag if fptrace > 0 { print("*** fpsr R[CPSR] = F[CPSR] ", hex(regs[_CPSR]), "\n") } return 1 } if i&0xff000000 == 0xea000000 { // unconditional branch // can happen in the middle of floating point // if the linker decides it is time to lay down // a sequence of instruction stream constants. delta := int32(i&0xffffff) << 8 >> 8 // sign extend if fptrace > 0 { print("*** cpu PC += ", hex((delta+2)*4), "\n") } return uint32(delta + 2) } // load/store regn is cpureg, regm is 8bit offset regd = i >> 12 & 0xf regn = i >> 16 & 0xf regm = i & 0xff << 2 // PLUS or MINUS ?? switch i & 0xfff00f00 { case 0xed900a00: // single load uaddr := uintptr(regs[regn] + regm) if uaddr < 4096 { if fptrace > 0 { print("*** load @", hex(uaddr), " => fault\n") } return _FAULT } addr := (*[1]uint32)(unsafe.Pointer(uaddr)) m.freglo[regd] = addr[0] if fptrace > 0 { print("*** load F[", regd, "] = ", hex(m.freglo[regd]), "\n") } return 1 case 0xed900b00: // double load uaddr := uintptr(regs[regn] + regm) if uaddr < 4096 { if fptrace > 0 { print("*** double load @", hex(uaddr), " => fault\n") } return _FAULT } addr := (*[2]uint32)(unsafe.Pointer(uaddr)) m.freglo[regd] = addr[0] m.freghi[regd] = addr[1] if fptrace > 0 { print("*** load D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xed800a00: // single store uaddr := uintptr(regs[regn] + regm) if uaddr < 4096 { if fptrace > 0 { print("*** store @", hex(uaddr), " => fault\n") } return _FAULT } addr := (*[1]uint32)(unsafe.Pointer(uaddr)) addr[0] = m.freglo[regd] if fptrace > 0 { print("*** *(", addr, ") = ", hex(addr[0]), "\n") } return 1 case 0xed800b00: // double store uaddr := uintptr(regs[regn] + regm) if uaddr < 4096 { if fptrace > 0 { print("*** double store @", hex(uaddr), " => fault\n") } return _FAULT } addr := (*[2]uint32)(unsafe.Pointer(uaddr)) addr[0] = m.freglo[regd] addr[1] = m.freghi[regd] if fptrace > 0 { print("*** *(", addr, ") = ", hex(addr[1]), "-", hex(addr[0]), "\n") } return 1 } // regd, regm, regn are 4bit variables regm = i >> 0 & 0xf switch i & 0xfff00ff0 { case 0xf3000110: // veor m.freglo[regd] = m.freglo[regm] ^ m.freglo[regn] m.freghi[regd] = m.freghi[regm] ^ m.freghi[regn] if fptrace > 0 { print("*** veor D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb00b00: // D[regd] = const(regn,regm) regn = regn<<4 | regm regm = 0x40000000 if regn&0x80 != 0 { regm |= 0x80000000 } if regn&0x40 != 0 { regm ^= 0x7fc00000 } regm |= regn & 0x3f << 16 m.freglo[regd] = 0 m.freghi[regd] = regm if fptrace > 0 { print("*** immed D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb00a00: // F[regd] = const(regn,regm) regn = regn<<4 | regm regm = 0x40000000 if regn&0x80 != 0 { regm |= 0x80000000 } if regn&0x40 != 0 { regm ^= 0x7e000000 } regm |= regn & 0x3f << 19 m.freglo[regd] = regm if fptrace > 0 { print("*** immed D[", regd, "] = ", hex(m.freglo[regd]), "\n") } return 1 case 0xee300b00: // D[regd] = D[regn]+D[regm] fputd(regd, fadd64(fgetd(regn), fgetd(regm))) if fptrace > 0 { print("*** add D[", regd, "] = D[", regn, "]+D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xee300a00: // F[regd] = F[regn]+F[regm] m.freglo[regd] = f64to32(fadd64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) if fptrace > 0 { print("*** add F[", regd, "] = F[", regn, "]+F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xee300b40: // D[regd] = D[regn]-D[regm] fputd(regd, fsub64(fgetd(regn), fgetd(regm))) if fptrace > 0 { print("*** sub D[", regd, "] = D[", regn, "]-D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xee300a40: // F[regd] = F[regn]-F[regm] m.freglo[regd] = f64to32(fsub64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) if fptrace > 0 { print("*** sub F[", regd, "] = F[", regn, "]-F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xee200b00: // D[regd] = D[regn]*D[regm] fputd(regd, fmul64(fgetd(regn), fgetd(regm))) if fptrace > 0 { print("*** mul D[", regd, "] = D[", regn, "]*D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xee200a00: // F[regd] = F[regn]*F[regm] m.freglo[regd] = f64to32(fmul64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) if fptrace > 0 { print("*** mul F[", regd, "] = F[", regn, "]*F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xee800b00: // D[regd] = D[regn]/D[regm] fputd(regd, fdiv64(fgetd(regn), fgetd(regm))) if fptrace > 0 { print("*** div D[", regd, "] = D[", regn, "]/D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xee800a00: // F[regd] = F[regn]/F[regm] m.freglo[regd] = f64to32(fdiv64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) if fptrace > 0 { print("*** div F[", regd, "] = F[", regn, "]/F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xee000b10: // S[regn] = R[regd] (MOVW) (regm ignored) m.freglo[regn] = regs[regd] if fptrace > 0 { print("*** cpy S[", regn, "] = R[", regd, "] ", hex(m.freglo[regn]), "\n") } return 1 case 0xee100b10: // R[regd] = S[regn] (MOVW) (regm ignored) regs[regd] = m.freglo[regn] if fptrace > 0 { print("*** cpy R[", regd, "] = S[", regn, "] ", hex(regs[regd]), "\n") } return 1 } // regd, regm are 4bit variables switch i & 0xffff0ff0 { case 0xeeb00a40: // F[regd] = F[regm] (MOVF) m.freglo[regd] = m.freglo[regm] if fptrace > 0 { print("*** F[", regd, "] = F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb00b40: // D[regd] = D[regm] (MOVD) m.freglo[regd] = m.freglo[regm] m.freghi[regd] = m.freghi[regm] if fptrace > 0 { print("*** D[", regd, "] = D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb10bc0: // D[regd] = sqrt D[regm] fputd(regd, sqrt(fgetd(regm))) if fptrace > 0 { print("*** D[", regd, "] = sqrt D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb00bc0: // D[regd] = abs D[regm] m.freglo[regd] = m.freglo[regm] m.freghi[regd] = m.freghi[regm] & (1<<31 - 1) if fptrace > 0 { print("*** D[", regd, "] = abs D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb00ac0: // F[regd] = abs F[regm] m.freglo[regd] = m.freglo[regm] & (1<<31 - 1) if fptrace > 0 { print("*** F[", regd, "] = abs F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb10b40: // D[regd] = neg D[regm] m.freglo[regd] = m.freglo[regm] m.freghi[regd] = m.freghi[regm] ^ 1<<31 if fptrace > 0 { print("*** D[", regd, "] = neg D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb10a40: // F[regd] = neg F[regm] m.freglo[regd] = m.freglo[regm] ^ 1<<31 if fptrace > 0 { print("*** F[", regd, "] = neg F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb40bc0: // D[regd] :: D[regm] (CMPD) cmp, nan := fcmp64(fgetd(regd), fgetd(regm)) m.fflag = fstatus(nan, cmp) if fptrace > 0 { print("*** cmp D[", regd, "]::D[", regm, "] ", hex(m.fflag), "\n") } return 1 case 0xeeb40ac0: // F[regd] :: F[regm] (CMPF) cmp, nan := fcmp64(f32to64(m.freglo[regd]), f32to64(m.freglo[regm])) m.fflag = fstatus(nan, cmp) if fptrace > 0 { print("*** cmp F[", regd, "]::F[", regm, "] ", hex(m.fflag), "\n") } return 1 case 0xeeb50bc0: // D[regd] :: 0 (CMPD) cmp, nan := fcmp64(fgetd(regd), 0) m.fflag = fstatus(nan, cmp) if fptrace > 0 { print("*** cmp D[", regd, "]::0 ", hex(m.fflag), "\n") } return 1 case 0xeeb50ac0: // F[regd] :: 0 (CMPF) cmp, nan := fcmp64(f32to64(m.freglo[regd]), 0) m.fflag = fstatus(nan, cmp) if fptrace > 0 { print("*** cmp F[", regd, "]::0 ", hex(m.fflag), "\n") } return 1 case 0xeeb70ac0: // D[regd] = F[regm] (MOVFD) fputd(regd, f32to64(m.freglo[regm])) if fptrace > 0 { print("*** f2d D[", regd, "]=F[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb70bc0: // F[regd] = D[regm] (MOVDF) m.freglo[regd] = f64to32(fgetd(regm)) if fptrace > 0 { print("*** d2f F[", regd, "]=D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeebd0ac0: // S[regd] = F[regm] (MOVFW) sval, ok := f64toint(f32to64(m.freglo[regm])) if !ok || int64(int32(sval)) != sval { sval = 0 } m.freglo[regd] = uint32(sval) if fptrace > 0 { print("*** fix S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeebc0ac0: // S[regd] = F[regm] (MOVFW.U) sval, ok := f64toint(f32to64(m.freglo[regm])) if !ok || int64(uint32(sval)) != sval { sval = 0 } m.freglo[regd] = uint32(sval) if fptrace > 0 { print("*** fix unsigned S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeebd0bc0: // S[regd] = D[regm] (MOVDW) sval, ok := f64toint(fgetd(regm)) if !ok || int64(int32(sval)) != sval { sval = 0 } m.freglo[regd] = uint32(sval) if fptrace > 0 { print("*** fix S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeebc0bc0: // S[regd] = D[regm] (MOVDW.U) sval, ok := f64toint(fgetd(regm)) if !ok || int64(uint32(sval)) != sval { sval = 0 } m.freglo[regd] = uint32(sval) if fptrace > 0 { print("*** fix unsigned S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb80ac0: // D[regd] = S[regm] (MOVWF) cmp := int32(m.freglo[regm]) if cmp < 0 { fputf(regd, f64to32(fintto64(-int64(cmp)))) m.freglo[regd] ^= 0x80000000 } else { fputf(regd, f64to32(fintto64(int64(cmp)))) } if fptrace > 0 { print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb80a40: // D[regd] = S[regm] (MOVWF.U) fputf(regd, f64to32(fintto64(int64(m.freglo[regm])))) if fptrace > 0 { print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb80bc0: // D[regd] = S[regm] (MOVWD) cmp := int32(m.freglo[regm]) if cmp < 0 { fputd(regd, fintto64(-int64(cmp))) m.freghi[regd] ^= 0x80000000 } else { fputd(regd, fintto64(int64(cmp))) } if fptrace > 0 { print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 case 0xeeb80b40: // D[regd] = S[regm] (MOVWD.U) fputd(regd, fintto64(int64(m.freglo[regm]))) if fptrace > 0 { print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") } return 1 } if i&0xff000000 == 0xee000000 || i&0xff000000 == 0xed000000 { print("stepflt ", pc, " ", hex(i), "\n") fabort() } return 0 } //go:nosplit func _sfloat2(pc uint32, regs [15]uint32) (newpc uint32) { systemstack(func() { newpc = sfloat2(pc, ®s) }) return } func _sfloatpanic() func sfloat2(pc uint32, regs *[15]uint32) uint32 { first := true for { skip := stepflt((*uint32)(unsafe.Pointer(uintptr(pc))), regs) if skip == 0 { break } first = false if skip == _FAULT { // Encountered bad address in store/load. // Record signal information and return to assembly // trampoline that fakes the call. const SIGSEGV = 11 curg := getg().m.curg curg.sig = SIGSEGV curg.sigcode0 = 0 curg.sigcode1 = 0 curg.sigpc = uintptr(pc) pc = uint32(funcPC(_sfloatpanic)) break } pc += 4 * skip } if first { print("sfloat2 ", pc, " ", hex(*(*uint32)(unsafe.Pointer(uintptr(pc)))), "\n") fabort() // not ok to fail first instruction } return pc }