// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" var ( m0 m g0 g ) // Goroutine scheduler // The scheduler's job is to distribute ready-to-run goroutines over worker threads. // // The main concepts are: // G - goroutine. // M - worker thread, or machine. // P - processor, a resource that is required to execute Go code. // M must have an associated P to execute Go code, however it can be // blocked or in a syscall w/o an associated P. // // Design doc at http://golang.org/s/go11sched. const ( // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. _GoidCacheBatch = 16 ) // The bootstrap sequence is: // // call osinit // call schedinit // make & queue new G // call runtime·mstart // // The new G calls runtime·main. func schedinit() { // raceinit must be the first call to race detector. // In particular, it must be done before mallocinit below calls racemapshadow. _g_ := getg() if raceenabled { _g_.racectx = raceinit() } sched.maxmcount = 10000 // Cache the framepointer experiment. This affects stack unwinding. framepointer_enabled = haveexperiment("framepointer") tracebackinit() symtabinit() stackinit() mallocinit() mcommoninit(_g_.m) goargs() goenvs() parsedebugvars() wbshadowinit() gcinit() sched.lastpoll = uint64(nanotime()) procs := 1 if n := atoi(gogetenv("GOMAXPROCS")); n > 0 { if n > _MaxGomaxprocs { n = _MaxGomaxprocs } procs = n } if procresize(int32(procs)) != nil { throw("unknown runnable goroutine during bootstrap") } if buildVersion == "" { // Condition should never trigger. This code just serves // to ensure runtime·buildVersion is kept in the resulting binary. buildVersion = "unknown" } } func dumpgstatus(gp *g) { _g_ := getg() print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") } func checkmcount() { // sched lock is held if sched.mcount > sched.maxmcount { print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") throw("thread exhaustion") } } func mcommoninit(mp *m) { _g_ := getg() // g0 stack won't make sense for user (and is not necessary unwindable). if _g_ != _g_.m.g0 { callers(1, mp.createstack[:]) } mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks()) if mp.fastrand == 0 { mp.fastrand = 0x49f6428a } lock(&sched.lock) mp.id = sched.mcount sched.mcount++ checkmcount() mpreinit(mp) if mp.gsignal != nil { mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard } // Add to allm so garbage collector doesn't free g->m // when it is just in a register or thread-local storage. mp.alllink = allm // NumCgoCall() iterates over allm w/o schedlock, // so we need to publish it safely. atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) unlock(&sched.lock) } // Mark gp ready to run. func ready(gp *g, traceskip int) { if trace.enabled { traceGoUnpark(gp, traceskip) } status := readgstatus(gp) // Mark runnable. _g_ := getg() _g_.m.locks++ // disable preemption because it can be holding p in a local var if status&^_Gscan != _Gwaiting { dumpgstatus(gp) throw("bad g->status in ready") } // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq casgstatus(gp, _Gwaiting, _Grunnable) runqput(_g_.m.p, gp) if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic wakep() } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } } func gcprocs() int32 { // Figure out how many CPUs to use during GC. // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. lock(&sched.lock) n := gomaxprocs if n > ncpu { n = ncpu } if n > _MaxGcproc { n = _MaxGcproc } if n > sched.nmidle+1 { // one M is currently running n = sched.nmidle + 1 } unlock(&sched.lock) return n } func needaddgcproc() bool { lock(&sched.lock) n := gomaxprocs if n > ncpu { n = ncpu } if n > _MaxGcproc { n = _MaxGcproc } n -= sched.nmidle + 1 // one M is currently running unlock(&sched.lock) return n > 0 } func helpgc(nproc int32) { _g_ := getg() lock(&sched.lock) pos := 0 for n := int32(1); n < nproc; n++ { // one M is currently running if allp[pos].mcache == _g_.m.mcache { pos++ } mp := mget() if mp == nil { throw("gcprocs inconsistency") } mp.helpgc = n mp.p = allp[pos] mp.mcache = allp[pos].mcache pos++ notewakeup(&mp.park) } unlock(&sched.lock) } // Similar to stoptheworld but best-effort and can be called several times. // There is no reverse operation, used during crashing. // This function must not lock any mutexes. func freezetheworld() { if gomaxprocs == 1 { return } // stopwait and preemption requests can be lost // due to races with concurrently executing threads, // so try several times for i := 0; i < 5; i++ { // this should tell the scheduler to not start any new goroutines sched.stopwait = 0x7fffffff atomicstore(&sched.gcwaiting, 1) // this should stop running goroutines if !preemptall() { break // no running goroutines } usleep(1000) } // to be sure usleep(1000) preemptall() usleep(1000) } func isscanstatus(status uint32) bool { if status == _Gscan { throw("isscanstatus: Bad status Gscan") } return status&_Gscan == _Gscan } // All reads and writes of g's status go through readgstatus, casgstatus // castogscanstatus, casfrom_Gscanstatus. //go:nosplit func readgstatus(gp *g) uint32 { return atomicload(&gp.atomicstatus) } // The Gscanstatuses are acting like locks and this releases them. // If it proves to be a performance hit we should be able to make these // simple atomic stores but for now we are going to throw if // we see an inconsistent state. func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { success := false // Check that transition is valid. switch oldval { default: print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") dumpgstatus(gp) throw("casfrom_Gscanstatus:top gp->status is not in scan state") case _Gscanrunnable, _Gscanwaiting, _Gscanrunning, _Gscansyscall: if newval == oldval&^_Gscan { success = cas(&gp.atomicstatus, oldval, newval) } case _Gscanenqueue: if newval == _Gwaiting { success = cas(&gp.atomicstatus, oldval, newval) } } if !success { print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") dumpgstatus(gp) throw("casfrom_Gscanstatus: gp->status is not in scan state") } if newval == _Grunning { gp.gcscanvalid = false } } // This will return false if the gp is not in the expected status and the cas fails. // This acts like a lock acquire while the casfromgstatus acts like a lock release. func castogscanstatus(gp *g, oldval, newval uint32) bool { switch oldval { case _Grunnable, _Gwaiting, _Gsyscall: if newval == oldval|_Gscan { return cas(&gp.atomicstatus, oldval, newval) } case _Grunning: if gp.gcscanvalid { print("runtime: castogscanstatus _Grunning and gp.gcscanvalid is true, newval=", hex(newval), "\n") throw("castogscanstatus") } if newval == _Gscanrunning || newval == _Gscanenqueue { return cas(&gp.atomicstatus, oldval, newval) } } print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") throw("castogscanstatus") panic("not reached") } // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus // and casfrom_Gscanstatus instead. // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that // put it in the Gscan state is finished. //go:nosplit func casgstatus(gp *g, oldval, newval uint32) { if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { systemstack(func() { print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") throw("casgstatus: bad incoming values") }) } // loop if gp->atomicstatus is in a scan state giving // GC time to finish and change the state to oldval. for !cas(&gp.atomicstatus, oldval, newval) { if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { systemstack(func() { throw("casgstatus: waiting for Gwaiting but is Grunnable") }) } // Help GC if needed. // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) { // gp.preemptscan = false // systemstack(func() { // gcphasework(gp) // }) // } } if newval == _Grunning { gp.gcscanvalid = false } } // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable. // Returns old status. Cannot call casgstatus directly, because we are racing with an // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus, // it might have become Grunnable by the time we get to the cas. If we called casgstatus, // it would loop waiting for the status to go back to Gwaiting, which it never will. //go:nosplit func casgcopystack(gp *g) uint32 { for { oldstatus := readgstatus(gp) &^ _Gscan if oldstatus != _Gwaiting && oldstatus != _Grunnable { throw("copystack: bad status, not Gwaiting or Grunnable") } if cas(&gp.atomicstatus, oldstatus, _Gcopystack) { return oldstatus } } } // stopg ensures that gp is stopped at a GC safe point where its stack can be scanned // or in the context of a moving collector the pointers can be flipped from pointing // to old object to pointing to new objects. // If stopg returns true, the caller knows gp is at a GC safe point and will remain there until // the caller calls restartg. // If stopg returns false, the caller is not responsible for calling restartg. This can happen // if another thread, either the gp itself or another GC thread is taking the responsibility // to do the GC work related to this thread. func stopg(gp *g) bool { for { if gp.gcworkdone { return false } switch s := readgstatus(gp); s { default: dumpgstatus(gp) throw("stopg: gp->atomicstatus is not valid") case _Gdead: return false case _Gcopystack: // Loop until a new stack is in place. case _Grunnable, _Gsyscall, _Gwaiting: // Claim goroutine by setting scan bit. if !castogscanstatus(gp, s, s|_Gscan) { break } // In scan state, do work. gcphasework(gp) return true case _Gscanrunnable, _Gscanwaiting, _Gscansyscall: // Goroutine already claimed by another GC helper. return false case _Grunning: // Claim goroutine, so we aren't racing with a status // transition away from Grunning. if !castogscanstatus(gp, _Grunning, _Gscanrunning) { break } // Mark gp for preemption. if !gp.gcworkdone { gp.preemptscan = true gp.preempt = true gp.stackguard0 = stackPreempt } // Unclaim. casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) return false } } } // The GC requests that this routine be moved from a scanmumble state to a mumble state. func restartg(gp *g) { s := readgstatus(gp) switch s { default: dumpgstatus(gp) throw("restartg: unexpected status") case _Gdead: // ok case _Gscanrunnable, _Gscanwaiting, _Gscansyscall: casfrom_Gscanstatus(gp, s, s&^_Gscan) // Scan is now completed. // Goroutine now needs to be made runnable. // We put it on the global run queue; ready blocks on the global scheduler lock. case _Gscanenqueue: casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting) if gp != getg().m.curg { throw("processing Gscanenqueue on wrong m") } dropg() ready(gp, 0) } } func stopscanstart(gp *g) { _g_ := getg() if _g_ == gp { throw("GC not moved to G0") } if stopg(gp) { if !isscanstatus(readgstatus(gp)) { dumpgstatus(gp) throw("GC not in scan state") } restartg(gp) } } // Runs on g0 and does the actual work after putting the g back on the run queue. func mquiesce(gpmaster *g) { // enqueue the calling goroutine. restartg(gpmaster) activeglen := len(allgs) for i := 0; i < activeglen; i++ { gp := allgs[i] if readgstatus(gp) == _Gdead { gp.gcworkdone = true // noop scan. } else { gp.gcworkdone = false } stopscanstart(gp) } // Check that the G's gcwork (such as scanning) has been done. If not do it now. // You can end up doing work here if the page trap on a Grunning Goroutine has // not been sprung or in some race situations. For example a runnable goes dead // and is started up again with a gp->gcworkdone set to false. for i := 0; i < activeglen; i++ { gp := allgs[i] for !gp.gcworkdone { status := readgstatus(gp) if status == _Gdead { //do nothing, scan not needed. gp.gcworkdone = true // scan is a noop break } if status == _Grunning && gp.stackguard0 == uintptr(stackPreempt) && notetsleep(&sched.stopnote, 100*1000) { // nanosecond arg noteclear(&sched.stopnote) } else { stopscanstart(gp) } } } for i := 0; i < activeglen; i++ { gp := allgs[i] status := readgstatus(gp) if isscanstatus(status) { print("mstopandscang:bottom: post scan bad status gp=", gp, " has status ", hex(status), "\n") dumpgstatus(gp) } if !gp.gcworkdone && status != _Gdead { print("mstopandscang:bottom: post scan gp=", gp, "->gcworkdone still false\n") dumpgstatus(gp) } } schedule() // Never returns. } // quiesce moves all the goroutines to a GC safepoint which for now is a at preemption point. // If the global gcphase is GCmark quiesce will ensure that all of the goroutine's stacks // have been scanned before it returns. func quiesce(mastergp *g) { castogscanstatus(mastergp, _Grunning, _Gscanenqueue) // Now move this to the g0 (aka m) stack. // g0 will potentially scan this thread and put mastergp on the runqueue mcall(mquiesce) } // Holding worldsema grants an M the right to try to stop the world. // The procedure is: // // semacquire(&worldsema); // m.preemptoff = "reason"; // stoptheworld(); // // ... do stuff ... // // m.preemptoff = ""; // semrelease(&worldsema); // starttheworld(); // var worldsema uint32 = 1 // This is used by the GC as well as the routines that do stack dumps. In the case // of GC all the routines can be reliably stopped. This is not always the case // when the system is in panic or being exited. func stoptheworld() { _g_ := getg() // If we hold a lock, then we won't be able to stop another M // that is blocked trying to acquire the lock. if _g_.m.locks > 0 { throw("stoptheworld: holding locks") } lock(&sched.lock) sched.stopwait = gomaxprocs atomicstore(&sched.gcwaiting, 1) preemptall() // stop current P _g_.m.p.status = _Pgcstop // Pgcstop is only diagnostic. sched.stopwait-- // try to retake all P's in Psyscall status for i := 0; i < int(gomaxprocs); i++ { p := allp[i] s := p.status if s == _Psyscall && cas(&p.status, s, _Pgcstop) { if trace.enabled { traceGoSysBlock(p) traceProcStop(p) } p.syscalltick++ sched.stopwait-- } } // stop idle P's for { p := pidleget() if p == nil { break } p.status = _Pgcstop sched.stopwait-- } wait := sched.stopwait > 0 unlock(&sched.lock) // wait for remaining P's to stop voluntarily if wait { for { // wait for 100us, then try to re-preempt in case of any races if notetsleep(&sched.stopnote, 100*1000) { noteclear(&sched.stopnote) break } preemptall() } } if sched.stopwait != 0 { throw("stoptheworld: not stopped") } for i := 0; i < int(gomaxprocs); i++ { p := allp[i] if p.status != _Pgcstop { throw("stoptheworld: not stopped") } } } func mhelpgc() { _g_ := getg() _g_.m.helpgc = -1 } func starttheworld() { _g_ := getg() _g_.m.locks++ // disable preemption because it can be holding p in a local var gp := netpoll(false) // non-blocking injectglist(gp) add := needaddgcproc() lock(&sched.lock) procs := gomaxprocs if newprocs != 0 { procs = newprocs newprocs = 0 } p1 := procresize(procs) sched.gcwaiting = 0 if sched.sysmonwait != 0 { sched.sysmonwait = 0 notewakeup(&sched.sysmonnote) } unlock(&sched.lock) for p1 != nil { p := p1 p1 = p1.link if p.m != nil { mp := p.m p.m = nil if mp.nextp != nil { throw("starttheworld: inconsistent mp->nextp") } mp.nextp = p notewakeup(&mp.park) } else { // Start M to run P. Do not start another M below. newm(nil, p) add = false } } // Wakeup an additional proc in case we have excessive runnable goroutines // in local queues or in the global queue. If we don't, the proc will park itself. // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { wakep() } if add { // If GC could have used another helper proc, start one now, // in the hope that it will be available next time. // It would have been even better to start it before the collection, // but doing so requires allocating memory, so it's tricky to // coordinate. This lazy approach works out in practice: // we don't mind if the first couple gc rounds don't have quite // the maximum number of procs. newm(mhelpgc, nil) } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } } // Called to start an M. //go:nosplit func mstart() { _g_ := getg() if _g_.stack.lo == 0 { // Initialize stack bounds from system stack. // Cgo may have left stack size in stack.hi. size := _g_.stack.hi if size == 0 { size = 8192 } _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) _g_.stack.lo = _g_.stack.hi - size + 1024 } // Initialize stack guards so that we can start calling // both Go and C functions with stack growth prologues. _g_.stackguard0 = _g_.stack.lo + _StackGuard _g_.stackguard1 = _g_.stackguard0 mstart1() } func mstart1() { _g_ := getg() if _g_ != _g_.m.g0 { throw("bad runtime·mstart") } // Record top of stack for use by mcall. // Once we call schedule we're never coming back, // so other calls can reuse this stack space. gosave(&_g_.m.g0.sched) _g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used asminit() minit() // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. if _g_.m == &m0 { // Create an extra M for callbacks on threads not created by Go. if iscgo && !cgoHasExtraM { cgoHasExtraM = true newextram() } initsig() } if _g_.m.mstartfn != 0 { fn := *(*func())(unsafe.Pointer(&_g_.m.mstartfn)) fn() } if _g_.m.helpgc != 0 { _g_.m.helpgc = 0 stopm() } else if _g_.m != &m0 { acquirep(_g_.m.nextp) _g_.m.nextp = nil } schedule() } // When running with cgo, we call _cgo_thread_start // to start threads for us so that we can play nicely with // foreign code. var cgoThreadStart unsafe.Pointer type cgothreadstart struct { g *g tls *uint64 fn unsafe.Pointer } // Allocate a new m unassociated with any thread. // Can use p for allocation context if needed. func allocm(_p_ *p) *m { _g_ := getg() _g_.m.locks++ // disable GC because it can be called from sysmon if _g_.m.p == nil { acquirep(_p_) // temporarily borrow p for mallocs in this function } mp := new(m) mcommoninit(mp) // In case of cgo or Solaris, pthread_create will make us a stack. // Windows and Plan 9 will layout sched stack on OS stack. if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" { mp.g0 = malg(-1) } else { mp.g0 = malg(8192) } mp.g0.m = mp if _p_ == _g_.m.p { releasep() } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } return mp } // needm is called when a cgo callback happens on a // thread without an m (a thread not created by Go). // In this case, needm is expected to find an m to use // and return with m, g initialized correctly. // Since m and g are not set now (likely nil, but see below) // needm is limited in what routines it can call. In particular // it can only call nosplit functions (textflag 7) and cannot // do any scheduling that requires an m. // // In order to avoid needing heavy lifting here, we adopt // the following strategy: there is a stack of available m's // that can be stolen. Using compare-and-swap // to pop from the stack has ABA races, so we simulate // a lock by doing an exchange (via casp) to steal the stack // head and replace the top pointer with MLOCKED (1). // This serves as a simple spin lock that we can use even // without an m. The thread that locks the stack in this way // unlocks the stack by storing a valid stack head pointer. // // In order to make sure that there is always an m structure // available to be stolen, we maintain the invariant that there // is always one more than needed. At the beginning of the // program (if cgo is in use) the list is seeded with a single m. // If needm finds that it has taken the last m off the list, its job // is - once it has installed its own m so that it can do things like // allocate memory - to create a spare m and put it on the list. // // Each of these extra m's also has a g0 and a curg that are // pressed into service as the scheduling stack and current // goroutine for the duration of the cgo callback. // // When the callback is done with the m, it calls dropm to // put the m back on the list. //go:nosplit func needm(x byte) { if iscgo && !cgoHasExtraM { // Can happen if C/C++ code calls Go from a global ctor. // Can not throw, because scheduler is not initialized yet. write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) exit(1) } // Lock extra list, take head, unlock popped list. // nilokay=false is safe here because of the invariant above, // that the extra list always contains or will soon contain // at least one m. mp := lockextra(false) // Set needextram when we've just emptied the list, // so that the eventual call into cgocallbackg will // allocate a new m for the extra list. We delay the // allocation until then so that it can be done // after exitsyscall makes sure it is okay to be // running at all (that is, there's no garbage collection // running right now). mp.needextram = mp.schedlink == nil unlockextra(mp.schedlink) // Install g (= m->g0) and set the stack bounds // to match the current stack. We don't actually know // how big the stack is, like we don't know how big any // scheduling stack is, but we assume there's at least 32 kB, // which is more than enough for us. setg(mp.g0) _g_ := getg() _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024 _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024 _g_.stackguard0 = _g_.stack.lo + _StackGuard // Initialize this thread to use the m. asminit() minit() } var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") // newextram allocates an m and puts it on the extra list. // It is called with a working local m, so that it can do things // like call schedlock and allocate. func newextram() { // Create extra goroutine locked to extra m. // The goroutine is the context in which the cgo callback will run. // The sched.pc will never be returned to, but setting it to // goexit makes clear to the traceback routines where // the goroutine stack ends. mp := allocm(nil) gp := malg(4096) gp.sched.pc = funcPC(goexit) + _PCQuantum gp.sched.sp = gp.stack.hi gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame gp.sched.lr = 0 gp.sched.g = guintptr(unsafe.Pointer(gp)) gp.syscallpc = gp.sched.pc gp.syscallsp = gp.sched.sp // malg returns status as Gidle, change to Gsyscall before adding to allg // where GC will see it. casgstatus(gp, _Gidle, _Gsyscall) gp.m = mp mp.curg = gp mp.locked = _LockInternal mp.lockedg = gp gp.lockedm = mp gp.goid = int64(xadd64(&sched.goidgen, 1)) if raceenabled { gp.racectx = racegostart(funcPC(newextram)) } // put on allg for garbage collector allgadd(gp) // Add m to the extra list. mnext := lockextra(true) mp.schedlink = mnext unlockextra(mp) } // dropm is called when a cgo callback has called needm but is now // done with the callback and returning back into the non-Go thread. // It puts the current m back onto the extra list. // // The main expense here is the call to signalstack to release the // m's signal stack, and then the call to needm on the next callback // from this thread. It is tempting to try to save the m for next time, // which would eliminate both these costs, but there might not be // a next time: the current thread (which Go does not control) might exit. // If we saved the m for that thread, there would be an m leak each time // such a thread exited. Instead, we acquire and release an m on each // call. These should typically not be scheduling operations, just a few // atomics, so the cost should be small. // // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread // variable using pthread_key_create. Unlike the pthread keys we already use // on OS X, this dummy key would never be read by Go code. It would exist // only so that we could register at thread-exit-time destructor. // That destructor would put the m back onto the extra list. // This is purely a performance optimization. The current version, // in which dropm happens on each cgo call, is still correct too. // We may have to keep the current version on systems with cgo // but without pthreads, like Windows. func dropm() { // Undo whatever initialization minit did during needm. unminit() // Clear m and g, and return m to the extra list. // After the call to setg we can only call nosplit functions // with no pointer manipulation. mp := getg().m mnext := lockextra(true) mp.schedlink = mnext setg(nil) unlockextra(mp) } var extram uintptr // lockextra locks the extra list and returns the list head. // The caller must unlock the list by storing a new list head // to extram. If nilokay is true, then lockextra will // return a nil list head if that's what it finds. If nilokay is false, // lockextra will keep waiting until the list head is no longer nil. //go:nosplit func lockextra(nilokay bool) *m { const locked = 1 for { old := atomicloaduintptr(&extram) if old == locked { yield := osyield yield() continue } if old == 0 && !nilokay { usleep(1) continue } if casuintptr(&extram, old, locked) { return (*m)(unsafe.Pointer(old)) } yield := osyield yield() continue } } //go:nosplit func unlockextra(mp *m) { atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp))) } // Create a new m. It will start off with a call to fn, or else the scheduler. // fn needs to be static and not a heap allocated closure. // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func newm(fn func(), _p_ *p) { mp := allocm(_p_) // procresize made _p_ reachable through allp, which doesn't change during GC, so WB can be eliminated setPNoWriteBarrier(&mp.nextp, _p_) // Store &fn as a uintptr since it is not heap allocated so the WB can be eliminated mp.mstartfn = *(*uintptr)(unsafe.Pointer(&fn)) if iscgo { var ts cgothreadstart if _cgo_thread_start == nil { throw("_cgo_thread_start missing") } // mp is reachable via allm and mp.g0 never changes, so WB can be eliminated. setGNoWriteBarrier(&ts.g, mp.g0) ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0])) ts.fn = unsafe.Pointer(funcPC(mstart)) asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts)) return } newosproc(mp, unsafe.Pointer(mp.g0.stack.hi)) } // Stops execution of the current m until new work is available. // Returns with acquired P. func stopm() { _g_ := getg() if _g_.m.locks != 0 { throw("stopm holding locks") } if _g_.m.p != nil { throw("stopm holding p") } if _g_.m.spinning { _g_.m.spinning = false xadd(&sched.nmspinning, -1) } retry: lock(&sched.lock) mput(_g_.m) unlock(&sched.lock) notesleep(&_g_.m.park) noteclear(&_g_.m.park) if _g_.m.helpgc != 0 { gchelper() _g_.m.helpgc = 0 _g_.m.mcache = nil _g_.m.p = nil goto retry } acquirep(_g_.m.nextp) _g_.m.nextp = nil } func mspinning() { getg().m.spinning = true } // Schedules some M to run the p (creates an M if necessary). // If p==nil, tries to get an idle P, if no idle P's does nothing. // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func startm(_p_ *p, spinning bool) { lock(&sched.lock) if _p_ == nil { _p_ = pidleget() if _p_ == nil { unlock(&sched.lock) if spinning { xadd(&sched.nmspinning, -1) } return } } mp := mget() unlock(&sched.lock) if mp == nil { var fn func() if spinning { fn = mspinning } newm(fn, _p_) return } if mp.spinning { throw("startm: m is spinning") } if mp.nextp != nil { throw("startm: m has p") } mp.spinning = spinning // procresize made _p_ reachable through allp, which doesn't change during GC, so WB can be eliminated setPNoWriteBarrier(&mp.nextp, _p_) notewakeup(&mp.park) } // Hands off P from syscall or locked M. // Always runs without a P, so write barriers are not allowed. //go:nowritebarrier func handoffp(_p_ *p) { // if it has local work, start it straight away if _p_.runqhead != _p_.runqtail || sched.runqsize != 0 { startm(_p_, false) return } // no local work, check that there are no spinning/idle M's, // otherwise our help is not required if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic startm(_p_, true) return } lock(&sched.lock) if sched.gcwaiting != 0 { _p_.status = _Pgcstop sched.stopwait-- if sched.stopwait == 0 { notewakeup(&sched.stopnote) } unlock(&sched.lock) return } if sched.runqsize != 0 { unlock(&sched.lock) startm(_p_, false) return } // If this is the last running P and nobody is polling network, // need to wakeup another M to poll network. if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 { unlock(&sched.lock) startm(_p_, false) return } pidleput(_p_) unlock(&sched.lock) } // Tries to add one more P to execute G's. // Called when a G is made runnable (newproc, ready). func wakep() { // be conservative about spinning threads if !cas(&sched.nmspinning, 0, 1) { return } startm(nil, true) } // Stops execution of the current m that is locked to a g until the g is runnable again. // Returns with acquired P. func stoplockedm() { _g_ := getg() if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m { throw("stoplockedm: inconsistent locking") } if _g_.m.p != nil { // Schedule another M to run this p. _p_ := releasep() handoffp(_p_) } incidlelocked(1) // Wait until another thread schedules lockedg again. notesleep(&_g_.m.park) noteclear(&_g_.m.park) status := readgstatus(_g_.m.lockedg) if status&^_Gscan != _Grunnable { print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n") dumpgstatus(_g_) throw("stoplockedm: not runnable") } acquirep(_g_.m.nextp) _g_.m.nextp = nil } // Schedules the locked m to run the locked gp. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func startlockedm(gp *g) { _g_ := getg() mp := gp.lockedm if mp == _g_.m { throw("startlockedm: locked to me") } if mp.nextp != nil { throw("startlockedm: m has p") } // directly handoff current P to the locked m incidlelocked(-1) _p_ := releasep() // procresize made _p_ reachable through allp, which doesn't change during GC, so WB can be eliminated setPNoWriteBarrier(&mp.nextp, _p_) notewakeup(&mp.park) stopm() } // Stops the current m for stoptheworld. // Returns when the world is restarted. func gcstopm() { _g_ := getg() if sched.gcwaiting == 0 { throw("gcstopm: not waiting for gc") } if _g_.m.spinning { _g_.m.spinning = false xadd(&sched.nmspinning, -1) } _p_ := releasep() lock(&sched.lock) _p_.status = _Pgcstop sched.stopwait-- if sched.stopwait == 0 { notewakeup(&sched.stopnote) } unlock(&sched.lock) stopm() } // Schedules gp to run on the current M. // Never returns. func execute(gp *g) { _g_ := getg() casgstatus(gp, _Grunnable, _Grunning) gp.waitsince = 0 gp.preempt = false gp.stackguard0 = gp.stack.lo + _StackGuard _g_.m.p.schedtick++ _g_.m.curg = gp gp.m = _g_.m // Check whether the profiler needs to be turned on or off. hz := sched.profilehz if _g_.m.profilehz != hz { resetcpuprofiler(hz) } if trace.enabled { traceGoStart() } gogo(&gp.sched) } // Finds a runnable goroutine to execute. // Tries to steal from other P's, get g from global queue, poll network. func findrunnable() *g { _g_ := getg() top: if sched.gcwaiting != 0 { gcstopm() goto top } if fingwait && fingwake { if gp := wakefing(); gp != nil { ready(gp, 0) } } // local runq if gp := runqget(_g_.m.p); gp != nil { return gp } // global runq if sched.runqsize != 0 { lock(&sched.lock) gp := globrunqget(_g_.m.p, 0) unlock(&sched.lock) if gp != nil { return gp } } // Poll network. // This netpoll is only an optimization before we resort to stealing. // We can safely skip it if there a thread blocked in netpoll already. // If there is any kind of logical race with that blocked thread // (e.g. it has already returned from netpoll, but does not set lastpoll yet), // this thread will do blocking netpoll below anyway. if netpollinited() && sched.lastpoll != 0 { if gp := netpoll(false); gp != nil { // non-blocking // netpoll returns list of goroutines linked by schedlink. injectglist(gp.schedlink) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp } } // If number of spinning M's >= number of busy P's, block. // This is necessary to prevent excessive CPU consumption // when GOMAXPROCS>>1 but the program parallelism is low. if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic goto stop } if !_g_.m.spinning { _g_.m.spinning = true xadd(&sched.nmspinning, 1) } // random steal from other P's for i := 0; i < int(2*gomaxprocs); i++ { if sched.gcwaiting != 0 { goto top } _p_ := allp[fastrand1()%uint32(gomaxprocs)] var gp *g if _p_ == _g_.m.p { gp = runqget(_p_) } else { gp = runqsteal(_g_.m.p, _p_) } if gp != nil { return gp } } stop: // return P and block lock(&sched.lock) if sched.gcwaiting != 0 { unlock(&sched.lock) goto top } if sched.runqsize != 0 { gp := globrunqget(_g_.m.p, 0) unlock(&sched.lock) return gp } _p_ := releasep() pidleput(_p_) unlock(&sched.lock) if _g_.m.spinning { _g_.m.spinning = false xadd(&sched.nmspinning, -1) } // check all runqueues once again for i := 0; i < int(gomaxprocs); i++ { _p_ := allp[i] if _p_ != nil && _p_.runqhead != _p_.runqtail { lock(&sched.lock) _p_ = pidleget() unlock(&sched.lock) if _p_ != nil { acquirep(_p_) goto top } break } } // poll network if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 { if _g_.m.p != nil { throw("findrunnable: netpoll with p") } if _g_.m.spinning { throw("findrunnable: netpoll with spinning") } gp := netpoll(true) // block until new work is available atomicstore64(&sched.lastpoll, uint64(nanotime())) if gp != nil { lock(&sched.lock) _p_ = pidleget() unlock(&sched.lock) if _p_ != nil { acquirep(_p_) injectglist(gp.schedlink) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp } injectglist(gp) } } stopm() goto top } func resetspinning() { _g_ := getg() var nmspinning uint32 if _g_.m.spinning { _g_.m.spinning = false nmspinning = xadd(&sched.nmspinning, -1) if nmspinning < 0 { throw("findrunnable: negative nmspinning") } } else { nmspinning = atomicload(&sched.nmspinning) } // M wakeup policy is deliberately somewhat conservative (see nmspinning handling), // so see if we need to wakeup another P here. if nmspinning == 0 && atomicload(&sched.npidle) > 0 { wakep() } } // Injects the list of runnable G's into the scheduler. // Can run concurrently with GC. func injectglist(glist *g) { if glist == nil { return } if trace.enabled { for gp := glist; gp != nil; gp = gp.schedlink { traceGoUnpark(gp, 0) } } lock(&sched.lock) var n int for n = 0; glist != nil; n++ { gp := glist glist = gp.schedlink casgstatus(gp, _Gwaiting, _Grunnable) globrunqput(gp) } unlock(&sched.lock) for ; n != 0 && sched.npidle != 0; n-- { startm(nil, false) } } // One round of scheduler: find a runnable goroutine and execute it. // Never returns. func schedule() { _g_ := getg() if _g_.m.locks != 0 { throw("schedule: holding locks") } if _g_.m.lockedg != nil { stoplockedm() execute(_g_.m.lockedg) // Never returns. } top: if sched.gcwaiting != 0 { gcstopm() goto top } var gp *g if trace.enabled || trace.shutdown { gp = traceReader() if gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) traceGoUnpark(gp, 0) resetspinning() } } if gp == nil { // Check the global runnable queue once in a while to ensure fairness. // Otherwise two goroutines can completely occupy the local runqueue // by constantly respawning each other. if _g_.m.p.schedtick%61 == 0 && sched.runqsize > 0 { lock(&sched.lock) gp = globrunqget(_g_.m.p, 1) unlock(&sched.lock) if gp != nil { resetspinning() } } } if gp == nil { gp = runqget(_g_.m.p) if gp != nil && _g_.m.spinning { throw("schedule: spinning with local work") } } if gp == nil { gp = findrunnable() // blocks until work is available resetspinning() } if gp.lockedm != nil { // Hands off own p to the locked m, // then blocks waiting for a new p. startlockedm(gp) goto top } execute(gp) } // dropg removes the association between m and the current goroutine m->curg (gp for short). // Typically a caller sets gp's status away from Grunning and then // immediately calls dropg to finish the job. The caller is also responsible // for arranging that gp will be restarted using ready at an // appropriate time. After calling dropg and arranging for gp to be // readied later, the caller can do other work but eventually should // call schedule to restart the scheduling of goroutines on this m. func dropg() { _g_ := getg() if _g_.m.lockedg == nil { _g_.m.curg.m = nil _g_.m.curg = nil } } func parkunlock_c(gp *g, lock unsafe.Pointer) bool { unlock((*mutex)(lock)) return true } // park continuation on g0. func park_m(gp *g) { _g_ := getg() if trace.enabled { traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp) } casgstatus(gp, _Grunning, _Gwaiting) dropg() if _g_.m.waitunlockf != nil { fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf)) ok := fn(gp, _g_.m.waitlock) _g_.m.waitunlockf = nil _g_.m.waitlock = nil if !ok { if trace.enabled { traceGoUnpark(gp, 2) } casgstatus(gp, _Gwaiting, _Grunnable) execute(gp) // Schedule it back, never returns. } } schedule() } func goschedImpl(gp *g) { status := readgstatus(gp) if status&^_Gscan != _Grunning { dumpgstatus(gp) throw("bad g status") } casgstatus(gp, _Grunning, _Grunnable) dropg() lock(&sched.lock) globrunqput(gp) unlock(&sched.lock) schedule() } // Gosched continuation on g0. func gosched_m(gp *g) { if trace.enabled { traceGoSched() } goschedImpl(gp) } func gopreempt_m(gp *g) { if trace.enabled { traceGoPreempt() } goschedImpl(gp) } // Finishes execution of the current goroutine. func goexit1() { if raceenabled { racegoend() } if trace.enabled { traceGoEnd() } mcall(goexit0) } // goexit continuation on g0. func goexit0(gp *g) { _g_ := getg() casgstatus(gp, _Grunning, _Gdead) gp.m = nil gp.lockedm = nil _g_.m.lockedg = nil gp.paniconfault = false gp._defer = nil // should be true already but just in case. gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. gp.writebuf = nil gp.waitreason = "" gp.param = nil dropg() if _g_.m.locked&^_LockExternal != 0 { print("invalid m->locked = ", _g_.m.locked, "\n") throw("internal lockOSThread error") } _g_.m.locked = 0 gfput(_g_.m.p, gp) schedule() } //go:nosplit //go:nowritebarrier func save(pc, sp uintptr) { _g_ := getg() _g_.sched.pc = pc _g_.sched.sp = sp _g_.sched.lr = 0 _g_.sched.ret = 0 _g_.sched.ctxt = nil _g_.sched.g = guintptr(unsafe.Pointer(_g_)) } // The goroutine g is about to enter a system call. // Record that it's not using the cpu anymore. // This is called only from the go syscall library and cgocall, // not from the low-level system calls used by the // // Entersyscall cannot split the stack: the gosave must // make g->sched refer to the caller's stack segment, because // entersyscall is going to return immediately after. // // Nothing entersyscall calls can split the stack either. // We cannot safely move the stack during an active call to syscall, // because we do not know which of the uintptr arguments are // really pointers (back into the stack). // In practice, this means that we make the fast path run through // entersyscall doing no-split things, and the slow path has to use systemstack // to run bigger things on the system stack. // // reentersyscall is the entry point used by cgo callbacks, where explicitly // saved SP and PC are restored. This is needed when exitsyscall will be called // from a function further up in the call stack than the parent, as g->syscallsp // must always point to a valid stack frame. entersyscall below is the normal // entry point for syscalls, which obtains the SP and PC from the caller. // // Syscall tracing: // At the start of a syscall we emit traceGoSysCall to capture the stack trace. // If the syscall does not block, that is it, we do not emit any other events. // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; // when syscall returns we emit traceGoSysExit and when the goroutine starts running // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.syscalltick), // whoever emits traceGoSysBlock increments p.syscalltick afterwards; // and we wait for the increment before emitting traceGoSysExit. // Note that the increment is done even if tracing is not enabled, // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. // //go:nosplit func reentersyscall(pc, sp uintptr) { _g_ := getg() // Disable preemption because during this function g is in Gsyscall status, // but can have inconsistent g->sched, do not let GC observe it. _g_.m.locks++ if trace.enabled { systemstack(traceGoSysCall) } // Entersyscall must not call any function that might split/grow the stack. // (See details in comment above.) // Catch calls that might, by replacing the stack guard with something that // will trip any stack check and leaving a flag to tell newstack to die. _g_.stackguard0 = stackPreempt _g_.throwsplit = true // Leave SP around for GC and traceback. save(pc, sp) _g_.syscallsp = sp _g_.syscallpc = pc casgstatus(_g_, _Grunning, _Gsyscall) if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { systemstack(func() { print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") throw("entersyscall") }) } if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic systemstack(entersyscall_sysmon) save(pc, sp) } _g_.m.syscalltick = _g_.m.p.syscalltick _g_.m.mcache = nil _g_.m.p.m = nil atomicstore(&_g_.m.p.status, _Psyscall) if sched.gcwaiting != 0 { systemstack(entersyscall_gcwait) save(pc, sp) } // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched). // We set _StackGuard to StackPreempt so that first split stack check calls morestack. // Morestack detects this case and throws. _g_.stackguard0 = stackPreempt _g_.m.locks-- } // Standard syscall entry used by the go syscall library and normal cgo calls. //go:nosplit func entersyscall(dummy int32) { reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy))) } func entersyscall_sysmon() { lock(&sched.lock) if atomicload(&sched.sysmonwait) != 0 { atomicstore(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) } func entersyscall_gcwait() { _g_ := getg() _p_ := _g_.m.p lock(&sched.lock) if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) { if trace.enabled { traceGoSysBlock(_p_) traceProcStop(_p_) } _p_.syscalltick++ if sched.stopwait--; sched.stopwait == 0 { notewakeup(&sched.stopnote) } } unlock(&sched.lock) } // The same as entersyscall(), but with a hint that the syscall is blocking. //go:nosplit func entersyscallblock(dummy int32) { _g_ := getg() _g_.m.locks++ // see comment in entersyscall _g_.throwsplit = true _g_.stackguard0 = stackPreempt // see comment in entersyscall _g_.m.syscalltick = _g_.m.p.syscalltick _g_.m.p.syscalltick++ // Leave SP around for GC and traceback. pc := getcallerpc(unsafe.Pointer(&dummy)) sp := getcallersp(unsafe.Pointer(&dummy)) save(pc, sp) _g_.syscallsp = _g_.sched.sp _g_.syscallpc = _g_.sched.pc if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { sp1 := sp sp2 := _g_.sched.sp sp3 := _g_.syscallsp systemstack(func() { print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") throw("entersyscallblock") }) } casgstatus(_g_, _Grunning, _Gsyscall) if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { systemstack(func() { print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") throw("entersyscallblock") }) } systemstack(entersyscallblock_handoff) // Resave for traceback during blocked call. save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy))) _g_.m.locks-- } func entersyscallblock_handoff() { if trace.enabled { traceGoSysCall() traceGoSysBlock(getg().m.p) } handoffp(releasep()) } // The goroutine g exited its system call. // Arrange for it to run on a cpu again. // This is called only from the go syscall library, not // from the low-level system calls used by the //go:nosplit func exitsyscall(dummy int32) { _g_ := getg() _g_.m.locks++ // see comment in entersyscall if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp { throw("exitsyscall: syscall frame is no longer valid") } _g_.waitsince = 0 oldp := _g_.m.p if exitsyscallfast() { if _g_.m.mcache == nil { throw("lost mcache") } if trace.enabled { if oldp != _g_.m.p || _g_.m.syscalltick != _g_.m.p.syscalltick { systemstack(traceGoStart) } } // There's a cpu for us, so we can run. _g_.m.p.syscalltick++ // We need to cas the status and scan before resuming... casgstatus(_g_, _Gsyscall, _Grunning) // Garbage collector isn't running (since we are), // so okay to clear syscallsp. _g_.syscallsp = 0 _g_.m.locks-- if _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } else { // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock _g_.stackguard0 = _g_.stack.lo + _StackGuard } _g_.throwsplit = false return } if trace.enabled { // Wait till traceGoSysBlock event is emited. // This ensures consistency of the trace (the goroutine is started after it is blocked). for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { osyield() } // This can't be done since the GC may be running and this code // will invoke write barriers. // TODO: Figure out how to get traceGoSysExit into the trace log or // it is likely not to work as expected. // systemstack(traceGoSysExit) } _g_.m.locks-- // Call the scheduler. mcall(exitsyscall0) if _g_.m.mcache == nil { throw("lost mcache") } // Scheduler returned, so we're allowed to run now. // Delete the syscallsp information that we left for // the garbage collector during the system call. // Must wait until now because until gosched returns // we don't know for sure that the garbage collector // is not running. _g_.syscallsp = 0 _g_.m.p.syscalltick++ _g_.throwsplit = false } //go:nosplit func exitsyscallfast() bool { _g_ := getg() // Freezetheworld sets stopwait but does not retake P's. if sched.stopwait != 0 { _g_.m.mcache = nil _g_.m.p = nil return false } // Try to re-acquire the last P. if _g_.m.p != nil && _g_.m.p.status == _Psyscall && cas(&_g_.m.p.status, _Psyscall, _Prunning) { // There's a cpu for us, so we can run. _g_.m.mcache = _g_.m.p.mcache _g_.m.p.m = _g_.m if _g_.m.syscalltick != _g_.m.p.syscalltick { if trace.enabled { // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). // traceGoSysBlock for this syscall was already emitted, // but here we effectively retake the p from the new syscall running on the same p. systemstack(func() { // Denote blocking of the new syscall. traceGoSysBlock(_g_.m.p) // Denote completion of the current syscall. traceGoSysExit() }) } _g_.m.p.syscalltick++ } return true } // Try to get any other idle P. oldp := _g_.m.p _g_.m.mcache = nil _g_.m.p = nil if sched.pidle != nil { var ok bool systemstack(func() { ok = exitsyscallfast_pidle() if ok && trace.enabled { if oldp != nil { // Wait till traceGoSysBlock event is emited. // This ensures consistency of the trace (the goroutine is started after it is blocked). for oldp.syscalltick == _g_.m.syscalltick { osyield() } } traceGoSysExit() } }) if ok { return true } } return false } func exitsyscallfast_pidle() bool { lock(&sched.lock) _p_ := pidleget() if _p_ != nil && atomicload(&sched.sysmonwait) != 0 { atomicstore(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) return true } return false } // exitsyscall slow path on g0. // Failed to acquire P, enqueue gp as runnable. func exitsyscall0(gp *g) { _g_ := getg() casgstatus(gp, _Gsyscall, _Grunnable) dropg() lock(&sched.lock) _p_ := pidleget() if _p_ == nil { globrunqput(gp) } else if atomicload(&sched.sysmonwait) != 0 { atomicstore(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) execute(gp) // Never returns. } if _g_.m.lockedg != nil { // Wait until another thread schedules gp and so m again. stoplockedm() execute(gp) // Never returns. } stopm() schedule() // Never returns. } func beforefork() { gp := getg().m.curg // Fork can hang if preempted with signals frequently enough (see issue 5517). // Ensure that we stay on the same M where we disable profiling. gp.m.locks++ if gp.m.profilehz != 0 { resetcpuprofiler(0) } // This function is called before fork in syscall package. // Code between fork and exec must not allocate memory nor even try to grow stack. // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack. // runtime_AfterFork will undo this in parent process, but not in child. gp.stackguard0 = stackFork } // Called from syscall package before fork. //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork //go:nosplit func syscall_runtime_BeforeFork() { systemstack(beforefork) } func afterfork() { gp := getg().m.curg // See the comment in beforefork. gp.stackguard0 = gp.stack.lo + _StackGuard hz := sched.profilehz if hz != 0 { resetcpuprofiler(hz) } gp.m.locks-- } // Called from syscall package after fork in parent. //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork //go:nosplit func syscall_runtime_AfterFork() { systemstack(afterfork) } // Allocate a new g, with a stack big enough for stacksize bytes. func malg(stacksize int32) *g { newg := new(g) if stacksize >= 0 { stacksize = round2(_StackSystem + stacksize) systemstack(func() { newg.stack = stackalloc(uint32(stacksize)) }) newg.stackguard0 = newg.stack.lo + _StackGuard newg.stackguard1 = ^uintptr(0) } return newg } // Create a new g running fn with siz bytes of arguments. // Put it on the queue of g's waiting to run. // The compiler turns a go statement into a call to this. // Cannot split the stack because it assumes that the arguments // are available sequentially after &fn; they would not be // copied if a stack split occurred. //go:nosplit func newproc(siz int32, fn *funcval) { argp := add(unsafe.Pointer(&fn), ptrSize) pc := getcallerpc(unsafe.Pointer(&siz)) systemstack(func() { newproc1(fn, (*uint8)(argp), siz, 0, pc) }) } // Create a new g running fn with narg bytes of arguments starting // at argp and returning nret bytes of results. callerpc is the // address of the go statement that created this. The new g is put // on the queue of g's waiting to run. func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g { _g_ := getg() if fn == nil { _g_.m.throwing = -1 // do not dump full stacks throw("go of nil func value") } _g_.m.locks++ // disable preemption because it can be holding p in a local var siz := narg + nret siz = (siz + 7) &^ 7 // We could allocate a larger initial stack if necessary. // Not worth it: this is almost always an error. // 4*sizeof(uintreg): extra space added below // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall). if siz >= _StackMin-4*regSize-regSize { throw("newproc: function arguments too large for new goroutine") } _p_ := _g_.m.p newg := gfget(_p_) if newg == nil { newg = malg(_StackMin) casgstatus(newg, _Gidle, _Gdead) allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. } if newg.stack.hi == 0 { throw("newproc1: newg missing stack") } if readgstatus(newg) != _Gdead { throw("newproc1: new g is not Gdead") } totalSize := 4*regSize + uintptr(siz) // extra space in case of reads slightly beyond frame if hasLinkRegister { totalSize += ptrSize } totalSize += -totalSize & (spAlign - 1) // align to spAlign sp := newg.stack.hi - totalSize spArg := sp if hasLinkRegister { // caller's LR *(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil spArg += ptrSize } memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg)) memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) newg.sched.sp = sp newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function newg.sched.g = guintptr(unsafe.Pointer(newg)) gostartcallfn(&newg.sched, fn) newg.gopc = callerpc newg.startpc = fn.fn casgstatus(newg, _Gdead, _Grunnable) if _p_.goidcache == _p_.goidcacheend { // Sched.goidgen is the last allocated id, // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. // At startup sched.goidgen=0, so main goroutine receives goid=1. _p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch) _p_.goidcache -= _GoidCacheBatch - 1 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch } newg.goid = int64(_p_.goidcache) _p_.goidcache++ if raceenabled { newg.racectx = racegostart(callerpc) } if trace.enabled { traceGoCreate(newg, newg.startpc) } runqput(_p_, newg) if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic wakep() } _g_.m.locks-- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack _g_.stackguard0 = stackPreempt } return newg } // Put on gfree list. // If local list is too long, transfer a batch to the global list. func gfput(_p_ *p, gp *g) { if readgstatus(gp) != _Gdead { throw("gfput: bad status (not Gdead)") } stksize := gp.stack.hi - gp.stack.lo if stksize != _FixedStack { // non-standard stack size - free it. stackfree(gp.stack) gp.stack.lo = 0 gp.stack.hi = 0 gp.stackguard0 = 0 } gp.schedlink = _p_.gfree _p_.gfree = gp _p_.gfreecnt++ if _p_.gfreecnt >= 64 { lock(&sched.gflock) for _p_.gfreecnt >= 32 { _p_.gfreecnt-- gp = _p_.gfree _p_.gfree = gp.schedlink gp.schedlink = sched.gfree sched.gfree = gp sched.ngfree++ } unlock(&sched.gflock) } } // Get from gfree list. // If local list is empty, grab a batch from global list. func gfget(_p_ *p) *g { retry: gp := _p_.gfree if gp == nil && sched.gfree != nil { lock(&sched.gflock) for _p_.gfreecnt < 32 && sched.gfree != nil { _p_.gfreecnt++ gp = sched.gfree sched.gfree = gp.schedlink sched.ngfree-- gp.schedlink = _p_.gfree _p_.gfree = gp } unlock(&sched.gflock) goto retry } if gp != nil { _p_.gfree = gp.schedlink _p_.gfreecnt-- if gp.stack.lo == 0 { // Stack was deallocated in gfput. Allocate a new one. systemstack(func() { gp.stack = stackalloc(_FixedStack) }) gp.stackguard0 = gp.stack.lo + _StackGuard } else { if raceenabled { racemalloc(unsafe.Pointer(gp.stack.lo), gp.stack.hi-gp.stack.lo) } } } return gp } // Purge all cached G's from gfree list to the global list. func gfpurge(_p_ *p) { lock(&sched.gflock) for _p_.gfreecnt != 0 { _p_.gfreecnt-- gp := _p_.gfree _p_.gfree = gp.schedlink gp.schedlink = sched.gfree sched.gfree = gp sched.ngfree++ } unlock(&sched.gflock) } // Breakpoint executes a breakpoint trap. func Breakpoint() { breakpoint() } // dolockOSThread is called by LockOSThread and lockOSThread below // after they modify m.locked. Do not allow preemption during this call, // or else the m might be different in this function than in the caller. //go:nosplit func dolockOSThread() { _g_ := getg() _g_.m.lockedg = _g_ _g_.lockedm = _g_.m } //go:nosplit // LockOSThread wires the calling goroutine to its current operating system thread. // Until the calling goroutine exits or calls UnlockOSThread, it will always // execute in that thread, and no other goroutine can. func LockOSThread() { getg().m.locked |= _LockExternal dolockOSThread() } //go:nosplit func lockOSThread() { getg().m.locked += _LockInternal dolockOSThread() } // dounlockOSThread is called by UnlockOSThread and unlockOSThread below // after they update m->locked. Do not allow preemption during this call, // or else the m might be in different in this function than in the caller. //go:nosplit func dounlockOSThread() { _g_ := getg() if _g_.m.locked != 0 { return } _g_.m.lockedg = nil _g_.lockedm = nil } //go:nosplit // UnlockOSThread unwires the calling goroutine from its fixed operating system thread. // If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op. func UnlockOSThread() { getg().m.locked &^= _LockExternal dounlockOSThread() } //go:nosplit func unlockOSThread() { _g_ := getg() if _g_.m.locked < _LockInternal { systemstack(badunlockosthread) } _g_.m.locked -= _LockInternal dounlockOSThread() } func badunlockosthread() { throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") } func gcount() int32 { n := int32(allglen) - sched.ngfree for i := 0; ; i++ { _p_ := allp[i] if _p_ == nil { break } n -= _p_.gfreecnt } // All these variables can be changed concurrently, so the result can be inconsistent. // But at least the current goroutine is running. if n < 1 { n = 1 } return n } func mcount() int32 { return sched.mcount } var prof struct { lock uint32 hz int32 } func _System() { _System() } func _ExternalCode() { _ExternalCode() } func _GC() { _GC() } var etext struct{} // Called if we receive a SIGPROF signal. func sigprof(pc, sp, lr uintptr, gp *g, mp *m) { if prof.hz == 0 { return } // Profiling runs concurrently with GC, so it must not allocate. mp.mallocing++ // Define that a "user g" is a user-created goroutine, and a "system g" // is one that is m->g0 or m->gsignal. We've only made sure that we // can unwind user g's, so exclude the system g's. // // It is not quite as easy as testing gp == m->curg (the current user g) // because we might be interrupted for profiling halfway through a // goroutine switch. The switch involves updating three (or four) values: // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, // because once it gets updated the new g is running. // // When switching from a user g to a system g, LR is not considered live, // so the update only affects g, SP, and PC. Since PC must be last, there // the possible partial transitions in ordinary execution are (1) g alone is updated, // (2) both g and SP are updated, and (3) SP alone is updated. // If g is updated, we'll see a system g and not look closer. // If SP alone is updated, we can detect the partial transition by checking // whether the SP is within g's stack bounds. (We could also require that SP // be changed only after g, but the stack bounds check is needed by other // cases, so there is no need to impose an additional requirement.) // // There is one exceptional transition to a system g, not in ordinary execution. // When a signal arrives, the operating system starts the signal handler running // with an updated PC and SP. The g is updated last, at the beginning of the // handler. There are two reasons this is okay. First, until g is updated the // g and SP do not match, so the stack bounds check detects the partial transition. // Second, signal handlers currently run with signals disabled, so a profiling // signal cannot arrive during the handler. // // When switching from a system g to a user g, there are three possibilities. // // First, it may be that the g switch has no PC update, because the SP // either corresponds to a user g throughout (as in asmcgocall) // or because it has been arranged to look like a user g frame // (as in cgocallback_gofunc). In this case, since the entire // transition is a g+SP update, a partial transition updating just one of // those will be detected by the stack bounds check. // // Second, when returning from a signal handler, the PC and SP updates // are performed by the operating system in an atomic update, so the g // update must be done before them. The stack bounds check detects // the partial transition here, and (again) signal handlers run with signals // disabled, so a profiling signal cannot arrive then anyway. // // Third, the common case: it may be that the switch updates g, SP, and PC // separately, as in gogo. // // Because gogo is the only instance, we check whether the PC lies // within that function, and if so, not ask for a traceback. This approach // requires knowing the size of the gogo function, which we // record in arch_*.h and check in runtime_test.go. // // There is another apparently viable approach, recorded here in case // the "PC within gogo" check turns out not to be usable. // It would be possible to delay the update of either g or SP until immediately // before the PC update instruction. Then, because of the stack bounds check, // the only problematic interrupt point is just before that PC update instruction, // and the sigprof handler can detect that instruction and simulate stepping past // it in order to reach a consistent state. On ARM, the update of g must be made // in two places (in R10 and also in a TLS slot), so the delayed update would // need to be the SP update. The sigprof handler must read the instruction at // the current PC and if it was the known instruction (for example, JMP BX or // MOV R2, PC), use that other register in place of the PC value. // The biggest drawback to this solution is that it requires that we can tell // whether it's safe to read from the memory pointed at by PC. // In a correct program, we can test PC == nil and otherwise read, // but if a profiling signal happens at the instant that a program executes // a bad jump (before the program manages to handle the resulting fault) // the profiling handler could fault trying to read nonexistent memory. // // To recap, there are no constraints on the assembly being used for the // transition. We simply require that g and SP match and that the PC is not // in gogo. traceback := true gogo := funcPC(gogo) if gp == nil || gp != mp.curg || sp < gp.stack.lo || gp.stack.hi < sp || (gogo <= pc && pc < gogo+_RuntimeGogoBytes) { traceback = false } var stk [maxCPUProfStack]uintptr n := 0 if traceback { n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap) } if !traceback || n <= 0 { // Normal traceback is impossible or has failed. // See if it falls into several common cases. n = 0 if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 { // Cgo, we can't unwind and symbolize arbitrary C code, // so instead collect Go stack that leads to the cgo call. // This is especially important on windows, since all syscalls are cgo calls. n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0) } if GOOS == "windows" && n == 0 && mp.libcallg != nil && mp.libcallpc != 0 && mp.libcallsp != 0 { // Libcall, i.e. runtime syscall on windows. // Collect Go stack that leads to the call. n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg, 0, &stk[0], len(stk), nil, nil, 0) } if n == 0 { // If all of the above has failed, account it against abstract "System" or "GC". n = 2 // "ExternalCode" is better than "etext". if pc > uintptr(unsafe.Pointer(&etext)) { pc = funcPC(_ExternalCode) + _PCQuantum } stk[0] = pc if mp.preemptoff != "" || mp.helpgc != 0 { stk[1] = funcPC(_GC) + _PCQuantum } else { stk[1] = funcPC(_System) + _PCQuantum } } } if prof.hz != 0 { // Simple cas-lock to coordinate with setcpuprofilerate. for !cas(&prof.lock, 0, 1) { osyield() } if prof.hz != 0 { cpuprof.add(stk[:n]) } atomicstore(&prof.lock, 0) } mp.mallocing-- } // Arrange to call fn with a traceback hz times a second. func setcpuprofilerate_m(hz int32) { // Force sane arguments. if hz < 0 { hz = 0 } // Disable preemption, otherwise we can be rescheduled to another thread // that has profiling enabled. _g_ := getg() _g_.m.locks++ // Stop profiler on this thread so that it is safe to lock prof. // if a profiling signal came in while we had prof locked, // it would deadlock. resetcpuprofiler(0) for !cas(&prof.lock, 0, 1) { osyield() } prof.hz = hz atomicstore(&prof.lock, 0) lock(&sched.lock) sched.profilehz = hz unlock(&sched.lock) if hz != 0 { resetcpuprofiler(hz) } _g_.m.locks-- } // Change number of processors. The world is stopped, sched is locked. // gcworkbufs are not being modified by either the GC or // the write barrier code. // Returns list of Ps with local work, they need to be scheduled by the caller. func procresize(nprocs int32) *p { old := gomaxprocs if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs { throw("procresize: invalid arg") } if trace.enabled { traceGomaxprocs(nprocs) } // initialize new P's for i := int32(0); i < nprocs; i++ { pp := allp[i] if pp == nil { pp = new(p) pp.id = i pp.status = _Pgcstop pp.sudogcache = pp.sudogbuf[:0] for i := range pp.deferpool { pp.deferpool[i] = pp.deferpoolbuf[i][:0] } atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) } if pp.mcache == nil { if old == 0 && i == 0 { if getg().m.mcache == nil { throw("missing mcache?") } pp.mcache = getg().m.mcache // bootstrap } else { pp.mcache = allocmcache() } } } // free unused P's for i := nprocs; i < old; i++ { p := allp[i] if trace.enabled { if p == getg().m.p { // moving to p[0], pretend that we were descheduled // and then scheduled again to keep the trace sane. traceGoSched() traceProcStop(p) } } // move all runable goroutines to the global queue for p.runqhead != p.runqtail { // pop from tail of local queue p.runqtail-- gp := p.runq[p.runqtail%uint32(len(p.runq))] // push onto head of global queue gp.schedlink = sched.runqhead sched.runqhead = gp if sched.runqtail == nil { sched.runqtail = gp } sched.runqsize++ } for i := range p.sudogbuf { p.sudogbuf[i] = nil } p.sudogcache = p.sudogbuf[:0] for i := range p.deferpool { for j := range p.deferpoolbuf[i] { p.deferpoolbuf[i][j] = nil } p.deferpool[i] = p.deferpoolbuf[i][:0] } freemcache(p.mcache) p.mcache = nil gfpurge(p) traceProcFree(p) p.status = _Pdead // can't free P itself because it can be referenced by an M in syscall } _g_ := getg() if _g_.m.p != nil && _g_.m.p.id < nprocs { // continue to use the current P _g_.m.p.status = _Prunning } else { // release the current P and acquire allp[0] if _g_.m.p != nil { _g_.m.p.m = nil } _g_.m.p = nil _g_.m.mcache = nil p := allp[0] p.m = nil p.status = _Pidle acquirep(p) if trace.enabled { traceGoStart() } } var runnablePs *p for i := nprocs - 1; i >= 0; i-- { p := allp[i] if _g_.m.p == p { continue } p.status = _Pidle if p.runqhead == p.runqtail { pidleput(p) } else { p.m = mget() p.link = runnablePs runnablePs = p } } var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) return runnablePs } // Associate p and the current m. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func acquirep(_p_ *p) { _g_ := getg() if _g_.m.p != nil || _g_.m.mcache != nil { throw("acquirep: already in go") } if _p_.m != nil || _p_.status != _Pidle { id := int32(0) if _p_.m != nil { id = _p_.m.id } print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") throw("acquirep: invalid p state") } // _p_.mcache holds the mcache and _p_ is in allp, so WB can be eliminated setMcacheNoWriteBarrier(&_g_.m.mcache, _p_.mcache) // _p_ is in allp so WB can be eliminated setPNoWriteBarrier(&_g_.m.p, _p_) // m is in _g_.m and is reachable through allg, so WB can be eliminated setMNoWriteBarrier(&_p_.m, _g_.m) _p_.status = _Prunning if trace.enabled { traceProcStart() } } // Disassociate p and the current m. func releasep() *p { _g_ := getg() if _g_.m.p == nil || _g_.m.mcache == nil { throw("releasep: invalid arg") } _p_ := _g_.m.p if _p_.m != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning { print("releasep: m=", _g_.m, " m->p=", _g_.m.p, " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n") throw("releasep: invalid p state") } if trace.enabled { traceProcStop(_g_.m.p) } _g_.m.p = nil _g_.m.mcache = nil _p_.m = nil _p_.status = _Pidle return _p_ } func incidlelocked(v int32) { lock(&sched.lock) sched.nmidlelocked += v if v > 0 { checkdead() } unlock(&sched.lock) } // Check for deadlock situation. // The check is based on number of running M's, if 0 -> deadlock. func checkdead() { // If we are dying because of a signal caught on an already idle thread, // freezetheworld will cause all running threads to block. // And runtime will essentially enter into deadlock state, // except that there is a thread that will call exit soon. if panicking > 0 { return } // -1 for sysmon run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1 if run > 0 { return } if run < 0 { print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n") throw("checkdead: inconsistent counts") } grunning := 0 lock(&allglock) for i := 0; i < len(allgs); i++ { gp := allgs[i] if isSystemGoroutine(gp) { continue } s := readgstatus(gp) switch s &^ _Gscan { case _Gwaiting: grunning++ case _Grunnable, _Grunning, _Gsyscall: unlock(&allglock) print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") throw("checkdead: runnable g") } } unlock(&allglock) if grunning == 0 { // possible if main goroutine calls runtime·Goexit() throw("no goroutines (main called runtime.Goexit) - deadlock!") } // Maybe jump time forward for playground. gp := timejump() if gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) globrunqput(gp) _p_ := pidleget() if _p_ == nil { throw("checkdead: no p for timer") } mp := mget() if mp == nil { newm(nil, _p_) } else { mp.nextp = _p_ notewakeup(&mp.park) } return } getg().m.throwing = -1 // do not dump full stacks throw("all goroutines are asleep - deadlock!") } func sysmon() { // If we go two minutes without a garbage collection, force one to run. forcegcperiod := int64(2 * 60 * 1e9) // If a heap span goes unused for 5 minutes after a garbage collection, // we hand it back to the operating system. scavengelimit := int64(5 * 60 * 1e9) if debug.scavenge > 0 { // Scavenge-a-lot for testing. forcegcperiod = 10 * 1e6 scavengelimit = 20 * 1e6 } lastscavenge := nanotime() nscavenge := 0 // Make wake-up period small enough for the sampling to be correct. maxsleep := forcegcperiod / 2 if scavengelimit < forcegcperiod { maxsleep = scavengelimit / 2 } lasttrace := int64(0) idle := 0 // how many cycles in succession we had not wokeup somebody delay := uint32(0) for { if idle == 0 { // start with 20us sleep... delay = 20 } else if idle > 50 { // start doubling the sleep after 1ms... delay *= 2 } if delay > 10*1000 { // up to 10ms delay = 10 * 1000 } usleep(delay) if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic lock(&sched.lock) if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) { atomicstore(&sched.sysmonwait, 1) unlock(&sched.lock) notetsleep(&sched.sysmonnote, maxsleep) lock(&sched.lock) atomicstore(&sched.sysmonwait, 0) noteclear(&sched.sysmonnote) idle = 0 delay = 20 } unlock(&sched.lock) } // poll network if not polled for more than 10ms lastpoll := int64(atomicload64(&sched.lastpoll)) now := nanotime() unixnow := unixnanotime() if lastpoll != 0 && lastpoll+10*1000*1000 < now { cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) gp := netpoll(false) // non-blocking - returns list of goroutines if gp != nil { // Need to decrement number of idle locked M's // (pretending that one more is running) before injectglist. // Otherwise it can lead to the following situation: // injectglist grabs all P's but before it starts M's to run the P's, // another M returns from syscall, finishes running its G, // observes that there is no work to do and no other running M's // and reports deadlock. incidlelocked(-1) injectglist(gp) incidlelocked(1) } } // retake P's blocked in syscalls // and preempt long running G's if retake(now) != 0 { idle = 0 } else { idle++ } // check if we need to force a GC lastgc := int64(atomicload64(&memstats.last_gc)) if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 { lock(&forcegc.lock) forcegc.idle = 0 forcegc.g.schedlink = nil injectglist(forcegc.g) unlock(&forcegc.lock) } // scavenge heap once in a while if lastscavenge+scavengelimit/2 < now { mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit)) lastscavenge = now nscavenge++ } if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now { lasttrace = now schedtrace(debug.scheddetail > 0) } } } var pdesc [_MaxGomaxprocs]struct { schedtick uint32 schedwhen int64 syscalltick uint32 syscallwhen int64 } func retake(now int64) uint32 { n := 0 for i := int32(0); i < gomaxprocs; i++ { _p_ := allp[i] if _p_ == nil { continue } pd := &pdesc[i] s := _p_.status if s == _Psyscall { // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). t := int64(_p_.syscalltick) if int64(pd.syscalltick) != t { pd.syscalltick = uint32(t) pd.syscallwhen = now continue } // On the one hand we don't want to retake Ps if there is no other work to do, // but on the other hand we want to retake them eventually // because they can prevent the sysmon thread from deep sleep. if _p_.runqhead == _p_.runqtail && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { continue } // Need to decrement number of idle locked M's // (pretending that one more is running) before the CAS. // Otherwise the M from which we retake can exit the syscall, // increment nmidle and report deadlock. incidlelocked(-1) if cas(&_p_.status, s, _Pidle) { if trace.enabled { traceGoSysBlock(_p_) traceProcStop(_p_) } n++ _p_.syscalltick++ handoffp(_p_) } incidlelocked(1) } else if s == _Prunning { // Preempt G if it's running for more than 10ms. t := int64(_p_.schedtick) if int64(pd.schedtick) != t { pd.schedtick = uint32(t) pd.schedwhen = now continue } if pd.schedwhen+10*1000*1000 > now { continue } preemptone(_p_) } } return uint32(n) } // Tell all goroutines that they have been preempted and they should stop. // This function is purely best-effort. It can fail to inform a goroutine if a // processor just started running it. // No locks need to be held. // Returns true if preemption request was issued to at least one goroutine. func preemptall() bool { res := false for i := int32(0); i < gomaxprocs; i++ { _p_ := allp[i] if _p_ == nil || _p_.status != _Prunning { continue } if preemptone(_p_) { res = true } } return res } // Tell the goroutine running on processor P to stop. // This function is purely best-effort. It can incorrectly fail to inform the // goroutine. It can send inform the wrong goroutine. Even if it informs the // correct goroutine, that goroutine might ignore the request if it is // simultaneously executing newstack. // No lock needs to be held. // Returns true if preemption request was issued. // The actual preemption will happen at some point in the future // and will be indicated by the gp->status no longer being // Grunning func preemptone(_p_ *p) bool { mp := _p_.m if mp == nil || mp == getg().m { return false } gp := mp.curg if gp == nil || gp == mp.g0 { return false } gp.preempt = true // Every call in a go routine checks for stack overflow by // comparing the current stack pointer to gp->stackguard0. // Setting gp->stackguard0 to StackPreempt folds // preemption into the normal stack overflow check. gp.stackguard0 = stackPreempt return true } var starttime int64 func schedtrace(detailed bool) { now := nanotime() if starttime == 0 { starttime = now } lock(&sched.lock) print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) if detailed { print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") } // We must be careful while reading data from P's, M's and G's. // Even if we hold schedlock, most data can be changed concurrently. // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. for i := int32(0); i < gomaxprocs; i++ { _p_ := allp[i] if _p_ == nil { continue } mp := _p_.m h := atomicload(&_p_.runqhead) t := atomicload(&_p_.runqtail) if detailed { id := int32(-1) if mp != nil { id = mp.id } print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n") } else { // In non-detailed mode format lengths of per-P run queues as: // [len1 len2 len3 len4] print(" ") if i == 0 { print("[") } print(t - h) if i == gomaxprocs-1 { print("]\n") } } } if !detailed { unlock(&sched.lock) return } for mp := allm; mp != nil; mp = mp.alllink { _p_ := mp.p gp := mp.curg lockedg := mp.lockedg id1 := int32(-1) if _p_ != nil { id1 = _p_.id } id2 := int64(-1) if gp != nil { id2 = gp.goid } id3 := int64(-1) if lockedg != nil { id3 = lockedg.goid } print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n") } lock(&allglock) for gi := 0; gi < len(allgs); gi++ { gp := allgs[gi] mp := gp.m lockedm := gp.lockedm id1 := int32(-1) if mp != nil { id1 = mp.id } id2 := int32(-1) if lockedm != nil { id2 = lockedm.id } print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n") } unlock(&allglock) unlock(&sched.lock) } // Put mp on midle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func mput(mp *m) { // sched.midle is reachable via allm, so WB can be eliminated. setMNoWriteBarrier(&mp.schedlink, sched.midle) // mp is reachable via allm, so WB can be eliminated. setMNoWriteBarrier(&sched.midle, mp) sched.nmidle++ checkdead() } // Try to get an m from midle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func mget() *m { mp := sched.midle if mp != nil { // mp.schedlink is reachable via mp, which is on allm, so WB can be eliminated. setMNoWriteBarrier(&sched.midle, mp.schedlink) sched.nmidle-- } return mp } // Put gp on the global runnable queue. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func globrunqput(gp *g) { gp.schedlink = nil if sched.runqtail != nil { // gp is on allg, so these three WBs can be eliminated. setGNoWriteBarrier(&sched.runqtail.schedlink, gp) } else { setGNoWriteBarrier(&sched.runqhead, gp) } setGNoWriteBarrier(&sched.runqtail, gp) sched.runqsize++ } // Put a batch of runnable goroutines on the global runnable queue. // Sched must be locked. func globrunqputbatch(ghead *g, gtail *g, n int32) { gtail.schedlink = nil if sched.runqtail != nil { sched.runqtail.schedlink = ghead } else { sched.runqhead = ghead } sched.runqtail = gtail sched.runqsize += n } // Try get a batch of G's from the global runnable queue. // Sched must be locked. func globrunqget(_p_ *p, max int32) *g { if sched.runqsize == 0 { return nil } n := sched.runqsize/gomaxprocs + 1 if n > sched.runqsize { n = sched.runqsize } if max > 0 && n > max { n = max } if n > int32(len(_p_.runq))/2 { n = int32(len(_p_.runq)) / 2 } sched.runqsize -= n if sched.runqsize == 0 { sched.runqtail = nil } gp := sched.runqhead sched.runqhead = gp.schedlink n-- for ; n > 0; n-- { gp1 := sched.runqhead sched.runqhead = gp1.schedlink runqput(_p_, gp1) } return gp } // Put p to on _Pidle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func pidleput(_p_ *p) { // sched.pidle, _p_.link and _p_ are reachable via allp, so WB can be eliminated. setPNoWriteBarrier(&_p_.link, sched.pidle) setPNoWriteBarrier(&sched.pidle, _p_) xadd(&sched.npidle, 1) // TODO: fast atomic } // Try get a p from _Pidle list. // Sched must be locked. // May run during STW, so write barriers are not allowed. //go:nowritebarrier func pidleget() *p { _p_ := sched.pidle if _p_ != nil { // _p_.link is reachable via a _p_ in allp, so WB can be eliminated. setPNoWriteBarrier(&sched.pidle, _p_.link) xadd(&sched.npidle, -1) // TODO: fast atomic } return _p_ } // Try to put g on local runnable queue. // If it's full, put onto global queue. // Executed only by the owner P. func runqput(_p_ *p, gp *g) { retry: h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers t := _p_.runqtail if t-h < uint32(len(_p_.runq)) { _p_.runq[t%uint32(len(_p_.runq))] = gp atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption return } if runqputslow(_p_, gp, h, t) { return } // the queue is not full, now the put above must suceed goto retry } // Put g and a batch of work from local runnable queue on global queue. // Executed only by the owner P. func runqputslow(_p_ *p, gp *g, h, t uint32) bool { var batch [len(_p_.runq)/2 + 1]*g // First, grab a batch from local queue. n := t - h n = n / 2 if n != uint32(len(_p_.runq)/2) { throw("runqputslow: queue is not full") } for i := uint32(0); i < n; i++ { batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))] } if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume return false } batch[n] = gp // Link the goroutines. for i := uint32(0); i < n; i++ { batch[i].schedlink = batch[i+1] } // Now put the batch on global queue. lock(&sched.lock) globrunqputbatch(batch[0], batch[n], int32(n+1)) unlock(&sched.lock) return true } // Get g from local runnable queue. // Executed only by the owner P. func runqget(_p_ *p) *g { for { h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers t := _p_.runqtail if t == h { return nil } gp := _p_.runq[h%uint32(len(_p_.runq))] if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume return gp } } } // Grabs a batch of goroutines from local runnable queue. // batch array must be of size len(p->runq)/2. Returns number of grabbed goroutines. // Can be executed by any P. func runqgrab(_p_ *p, batch []*g) uint32 { for { h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer n := t - h n = n - n/2 if n == 0 { return 0 } if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t continue } for i := uint32(0); i < n; i++ { batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))] } if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume return n } } } // Steal half of elements from local runnable queue of p2 // and put onto local runnable queue of p. // Returns one of the stolen elements (or nil if failed). func runqsteal(_p_, p2 *p) *g { var batch [len(_p_.runq) / 2]*g n := runqgrab(p2, batch[:]) if n == 0 { return nil } n-- gp := batch[n] if n == 0 { return gp } h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers t := _p_.runqtail if t-h+n >= uint32(len(_p_.runq)) { throw("runqsteal: runq overflow") } for i := uint32(0); i < n; i++ { _p_.runq[(t+i)%uint32(len(_p_.runq))] = batch[i] } atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption return gp } func testSchedLocalQueue() { _p_ := new(p) gs := make([]g, len(_p_.runq)) for i := 0; i < len(_p_.runq); i++ { if runqget(_p_) != nil { throw("runq is not empty initially") } for j := 0; j < i; j++ { runqput(_p_, &gs[i]) } for j := 0; j < i; j++ { if runqget(_p_) != &gs[i] { print("bad element at iter ", i, "/", j, "\n") throw("bad element") } } if runqget(_p_) != nil { throw("runq is not empty afterwards") } } } func testSchedLocalQueueSteal() { p1 := new(p) p2 := new(p) gs := make([]g, len(p1.runq)) for i := 0; i < len(p1.runq); i++ { for j := 0; j < i; j++ { gs[j].sig = 0 runqput(p1, &gs[j]) } gp := runqsteal(p2, p1) s := 0 if gp != nil { s++ gp.sig++ } for { gp = runqget(p2) if gp == nil { break } s++ gp.sig++ } for { gp = runqget(p1) if gp == nil { break } gp.sig++ } for j := 0; j < i; j++ { if gs[j].sig != 1 { print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n") throw("bad element") } } if s != i/2 && s != i/2+1 { print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n") throw("bad steal") } } } func setMaxThreads(in int) (out int) { lock(&sched.lock) out = int(sched.maxmcount) sched.maxmcount = int32(in) checkmcount() unlock(&sched.lock) return } func haveexperiment(name string) bool { x := goexperiment for x != "" { xname := "" i := index(x, ",") if i < 0 { xname, x = x, "" } else { xname, x = x[:i], x[i+1:] } if xname == name { return true } } return false } //go:nosplit func procPin() int { _g_ := getg() mp := _g_.m mp.locks++ return int(mp.p.id) } //go:nosplit func procUnpin() { _g_ := getg() _g_.m.locks-- } //go:linkname sync_runtime_procPin sync.runtime_procPin //go:nosplit func sync_runtime_procPin() int { return procPin() } //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin //go:nosplit func sync_runtime_procUnpin() { procUnpin() } //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin //go:nosplit func sync_atomic_runtime_procPin() int { return procPin() } //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin //go:nosplit func sync_atomic_runtime_procUnpin() { procUnpin() } // Active spinning for sync.Mutex. //go:linkname sync_runtime_canSpin sync.runtime_canSpin //go:nosplit func sync_runtime_canSpin(i int) bool { // sync.Mutex is cooperative, so we are conservative with spinning. // Spin only few times and only if running on a multicore machine and // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. // As opposed to runtime mutex we don't do passive spinning here, // because there can be work on global runq on on other Ps. if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { return false } if p := getg().m.p; p.runqhead != p.runqtail { return false } return true } //go:linkname sync_runtime_doSpin sync.runtime_doSpin //go:nosplit func sync_runtime_doSpin() { procyield(active_spin_cnt) }