// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // The image package implements a basic 2-D image library. package image // An Image is a rectangular grid of Colors drawn from a ColorModel. type Image interface { ColorModel() ColorModel Width() int Height() int // At(0, 0) returns the upper-left pixel of the grid. // At(Width()-1, Height()-1) returns the lower-right pixel. At(x, y int) Color } // An RGBA is an in-memory image backed by a 2-D slice of RGBAColor values. type RGBA struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]RGBAColor } func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel } func (p *RGBA) Width() int { if len(p.Pixel) == 0 { return 0 } return len(p.Pixel[0]) } func (p *RGBA) Height() int { return len(p.Pixel) } func (p *RGBA) At(x, y int) Color { return p.Pixel[y][x] } func (p *RGBA) Set(x, y int, c Color) { p.Pixel[y][x] = toRGBAColor(c).(RGBAColor) } // NewRGBA returns a new RGBA with the given width and height. func NewRGBA(w, h int) *RGBA { buf := make([]RGBAColor, w*h) pix := make([][]RGBAColor, h) for y := range pix { pix[y] = buf[w*y : w*(y+1)] } return &RGBA{pix} } // An RGBA64 is an in-memory image backed by a 2-D slice of RGBA64Color values. type RGBA64 struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]RGBA64Color } func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel } func (p *RGBA64) Width() int { if len(p.Pixel) == 0 { return 0 } return len(p.Pixel[0]) } func (p *RGBA64) Height() int { return len(p.Pixel) } func (p *RGBA64) At(x, y int) Color { return p.Pixel[y][x] } func (p *RGBA64) Set(x, y int, c Color) { p.Pixel[y][x] = toRGBA64Color(c).(RGBA64Color) } // NewRGBA64 returns a new RGBA64 with the given width and height. func NewRGBA64(w, h int) *RGBA64 { buf := make([]RGBA64Color, w*h) pix := make([][]RGBA64Color, h) for y := range pix { pix[y] = buf[w*y : w*(y+1)] } return &RGBA64{pix} } // A NRGBA is an in-memory image backed by a 2-D slice of NRGBAColor values. type NRGBA struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]NRGBAColor } func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel } func (p *NRGBA) Width() int { if len(p.Pixel) == 0 { return 0 } return len(p.Pixel[0]) } func (p *NRGBA) Height() int { return len(p.Pixel) } func (p *NRGBA) At(x, y int) Color { return p.Pixel[y][x] } func (p *NRGBA) Set(x, y int, c Color) { p.Pixel[y][x] = toNRGBAColor(c).(NRGBAColor) } // NewNRGBA returns a new NRGBA with the given width and height. func NewNRGBA(w, h int) *NRGBA { buf := make([]NRGBAColor, w*h) pix := make([][]NRGBAColor, h) for y := range pix { pix[y] = buf[w*y : w*(y+1)] } return &NRGBA{pix} } // A NRGBA64 is an in-memory image backed by a 2-D slice of NRGBA64Color values. type NRGBA64 struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]NRGBA64Color } func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel } func (p *NRGBA64) Width() int { if len(p.Pixel) == 0 { return 0 } return len(p.Pixel[0]) } func (p *NRGBA64) Height() int { return len(p.Pixel) } func (p *NRGBA64) At(x, y int) Color { return p.Pixel[y][x] } func (p *NRGBA64) Set(x, y int, c Color) { p.Pixel[y][x] = toNRGBA64Color(c).(NRGBA64Color) } // NewNRGBA64 returns a new NRGBA64 with the given width and height. func NewNRGBA64(w, h int) *NRGBA64 { buf := make([]NRGBA64Color, w*h) pix := make([][]NRGBA64Color, h) for y := range pix { pix[y] = buf[w*y : w*(y+1)] } return &NRGBA64{pix} } // An Alpha is an in-memory image backed by a 2-D slice of AlphaColor values. type Alpha struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Pixel[y][x]. Pixel [][]AlphaColor } func (p *Alpha) ColorModel() ColorModel { return AlphaColorModel } func (p *Alpha) Width() int { if len(p.Pixel) == 0 { return 0 } return len(p.Pixel[0]) } func (p *Alpha) Height() int { return len(p.Pixel) } func (p *Alpha) At(x, y int) Color { return p.Pixel[y][x] } func (p *Alpha) Set(x, y int, c Color) { p.Pixel[y][x] = toAlphaColor(c).(AlphaColor) } // NewAlpha returns a new Alpha with the given width and height. func NewAlpha(w, h int) *Alpha { buf := make([]AlphaColor, w*h) pix := make([][]AlphaColor, h) for y := range pix { pix[y] = buf[w*y : w*(y+1)] } return &Alpha{pix} } // A PalettedColorModel represents a fixed palette of colors. type PalettedColorModel []Color func diff(a, b uint32) uint32 { if a > b { return a - b } return b - a } // Convert returns the palette color closest to c in Euclidean R,G,B space. func (p PalettedColorModel) Convert(c Color) Color { if len(p) == 0 { return nil } cr, cg, cb, _ := c.RGBA() // Shift by 1 bit to avoid potential uint32 overflow in sum-squared-difference. cr >>= 1 cg >>= 1 cb >>= 1 result := Color(nil) bestSSD := uint32(1<<32 - 1) for _, v := range p { vr, vg, vb, _ := v.RGBA() vr >>= 1 vg >>= 1 vb >>= 1 dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb) ssd := (dr * dr) + (dg * dg) + (db * db) if ssd < bestSSD { bestSSD = ssd result = v } } return result } // A Paletted is an in-memory image backed by a 2-D slice of uint8 values and a PalettedColorModel. type Paletted struct { // The Pixel field's indices are y first, then x, so that At(x, y) == Palette[Pixel[y][x]]. Pixel [][]uint8 Palette PalettedColorModel } func (p *Paletted) ColorModel() ColorModel { return p.Palette } func (p *Paletted) Width() int { if len(p.Pixel) == 0 { return 0 } return len(p.Pixel[0]) } func (p *Paletted) Height() int { return len(p.Pixel) } func (p *Paletted) At(x, y int) Color { return p.Palette[p.Pixel[y][x]] } func (p *Paletted) ColorIndexAt(x, y int) uint8 { return p.Pixel[y][x] } func (p *Paletted) SetColorIndex(x, y int, index uint8) { p.Pixel[y][x] = index } // NewPaletted returns a new Paletted with the given width, height and palette. func NewPaletted(w, h int, m PalettedColorModel) *Paletted { buf := make([]uint8, w*h) pix := make([][]uint8, h) for y := range pix { pix[y] = buf[w*y : w*(y+1)] } return &Paletted{pix, m} }