// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime // This file contains the implementation of Go select statements. import ( "unsafe" ) const debugSelect = false // scase.kind values. // Known to compiler. // Changes here must also be made in src/cmd/compile/internal/gc/select.go's walkselect. const ( caseNil = iota caseRecv caseSend caseDefault ) // Select case descriptor. // Known to compiler. // Changes here must also be made in src/cmd/internal/gc/select.go's scasetype. type scase struct { c *hchan // chan elem unsafe.Pointer // data element kind uint16 pc uintptr // race pc (for race detector / msan) releasetime int64 } var ( chansendpc = funcPC(chansend) chanrecvpc = funcPC(chanrecv) ) func selectsetpc(cas *scase) { cas.pc = getcallerpc() } func sellock(scases []scase, lockorder []uint16) { var c *hchan for _, o := range lockorder { c0 := scases[o].c if c0 != nil && c0 != c { c = c0 lock(&c.lock) } } } func selunlock(scases []scase, lockorder []uint16) { // We must be very careful here to not touch sel after we have unlocked // the last lock, because sel can be freed right after the last unlock. // Consider the following situation. // First M calls runtime·park() in runtime·selectgo() passing the sel. // Once runtime·park() has unlocked the last lock, another M makes // the G that calls select runnable again and schedules it for execution. // When the G runs on another M, it locks all the locks and frees sel. // Now if the first M touches sel, it will access freed memory. for i := len(scases) - 1; i >= 0; i-- { c := scases[lockorder[i]].c if c == nil { break } if i > 0 && c == scases[lockorder[i-1]].c { continue // will unlock it on the next iteration } unlock(&c.lock) } } func selparkcommit(gp *g, _ unsafe.Pointer) bool { // This must not access gp's stack (see gopark). In // particular, it must not access the *hselect. That's okay, // because by the time this is called, gp.waiting has all // channels in lock order. var lastc *hchan for sg := gp.waiting; sg != nil; sg = sg.waitlink { if sg.c != lastc && lastc != nil { // As soon as we unlock the channel, fields in // any sudog with that channel may change, // including c and waitlink. Since multiple // sudogs may have the same channel, we unlock // only after we've passed the last instance // of a channel. unlock(&lastc.lock) } lastc = sg.c } if lastc != nil { unlock(&lastc.lock) } return true } func block() { gopark(nil, nil, waitReasonSelectNoCases, traceEvGoStop, 1) // forever } // selectgo implements the select statement. // // cas0 points to an array of type [ncases]scase, and order0 points to // an array of type [2*ncases]uint16. Both reside on the goroutine's // stack (regardless of any escaping in selectgo). // // selectgo returns the index of the chosen scase, which matches the // ordinal position of its respective select{recv,send,default} call. // Also, if the chosen scase was a receive operation, it returns whether // a value was received. func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) { if debugSelect { print("select: cas0=", cas0, "\n") } cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0)) order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0)) scases := cas1[:ncases:ncases] pollorder := order1[:ncases:ncases] lockorder := order1[ncases:][:ncases:ncases] // Replace send/receive cases involving nil channels with // caseNil so logic below can assume non-nil channel. for i := range scases { cas := &scases[i] if cas.c == nil && cas.kind != caseDefault { *cas = scase{} } } var t0 int64 if blockprofilerate > 0 { t0 = cputicks() for i := 0; i < ncases; i++ { scases[i].releasetime = -1 } } // The compiler rewrites selects that statically have // only 0 or 1 cases plus default into simpler constructs. // The only way we can end up with such small sel.ncase // values here is for a larger select in which most channels // have been nilled out. The general code handles those // cases correctly, and they are rare enough not to bother // optimizing (and needing to test). // generate permuted order for i := 1; i < ncases; i++ { j := fastrandn(uint32(i + 1)) pollorder[i] = pollorder[j] pollorder[j] = uint16(i) } // sort the cases by Hchan address to get the locking order. // simple heap sort, to guarantee n log n time and constant stack footprint. for i := 0; i < ncases; i++ { j := i // Start with the pollorder to permute cases on the same channel. c := scases[pollorder[i]].c for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() { k := (j - 1) / 2 lockorder[j] = lockorder[k] j = k } lockorder[j] = pollorder[i] } for i := ncases - 1; i >= 0; i-- { o := lockorder[i] c := scases[o].c lockorder[i] = lockorder[0] j := 0 for { k := j*2 + 1 if k >= i { break } if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() { k++ } if c.sortkey() < scases[lockorder[k]].c.sortkey() { lockorder[j] = lockorder[k] j = k continue } break } lockorder[j] = o } if debugSelect { for i := 0; i+1 < ncases; i++ { if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() { print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n") throw("select: broken sort") } } } // lock all the channels involved in the select sellock(scases, lockorder) var ( gp *g sg *sudog c *hchan k *scase sglist *sudog sgnext *sudog qp unsafe.Pointer nextp **sudog ) loop: // pass 1 - look for something already waiting var dfli int var dfl *scase var casi int var cas *scase var recvOK bool for i := 0; i < ncases; i++ { casi = int(pollorder[i]) cas = &scases[casi] c = cas.c switch cas.kind { case caseNil: continue case caseRecv: sg = c.sendq.dequeue() if sg != nil { goto recv } if c.qcount > 0 { goto bufrecv } if c.closed != 0 { goto rclose } case caseSend: if raceenabled { racereadpc(unsafe.Pointer(c), cas.pc, chansendpc) } if c.closed != 0 { goto sclose } sg = c.recvq.dequeue() if sg != nil { goto send } if c.qcount < c.dataqsiz { goto bufsend } case caseDefault: dfli = casi dfl = cas } } if dfl != nil { selunlock(scases, lockorder) casi = dfli cas = dfl goto retc } // pass 2 - enqueue on all chans gp = getg() if gp.waiting != nil { throw("gp.waiting != nil") } nextp = &gp.waiting for _, casei := range lockorder { casi = int(casei) cas = &scases[casi] if cas.kind == caseNil { continue } c = cas.c sg := acquireSudog() sg.g = gp sg.isSelect = true // No stack splits between assigning elem and enqueuing // sg on gp.waiting where copystack can find it. sg.elem = cas.elem sg.releasetime = 0 if t0 != 0 { sg.releasetime = -1 } sg.c = c // Construct waiting list in lock order. *nextp = sg nextp = &sg.waitlink switch cas.kind { case caseRecv: c.recvq.enqueue(sg) case caseSend: c.sendq.enqueue(sg) } } // wait for someone to wake us up gp.param = nil gopark(selparkcommit, nil, waitReasonSelect, traceEvGoBlockSelect, 1) sellock(scases, lockorder) gp.selectDone = 0 sg = (*sudog)(gp.param) gp.param = nil // pass 3 - dequeue from unsuccessful chans // otherwise they stack up on quiet channels // record the successful case, if any. // We singly-linked up the SudoGs in lock order. casi = -1 cas = nil sglist = gp.waiting // Clear all elem before unlinking from gp.waiting. for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink { sg1.isSelect = false sg1.elem = nil sg1.c = nil } gp.waiting = nil for _, casei := range lockorder { k = &scases[casei] if k.kind == caseNil { continue } if sglist.releasetime > 0 { k.releasetime = sglist.releasetime } if sg == sglist { // sg has already been dequeued by the G that woke us up. casi = int(casei) cas = k } else { c = k.c if k.kind == caseSend { c.sendq.dequeueSudoG(sglist) } else { c.recvq.dequeueSudoG(sglist) } } sgnext = sglist.waitlink sglist.waitlink = nil releaseSudog(sglist) sglist = sgnext } if cas == nil { // We can wake up with gp.param == nil (so cas == nil) // when a channel involved in the select has been closed. // It is easiest to loop and re-run the operation; // we'll see that it's now closed. // Maybe some day we can signal the close explicitly, // but we'd have to distinguish close-on-reader from close-on-writer. // It's easiest not to duplicate the code and just recheck above. // We know that something closed, and things never un-close, // so we won't block again. goto loop } c = cas.c if debugSelect { print("wait-return: cas0=", cas0, " c=", c, " cas=", cas, " kind=", cas.kind, "\n") } if cas.kind == caseRecv { recvOK = true } if raceenabled { if cas.kind == caseRecv && cas.elem != nil { raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc) } else if cas.kind == caseSend { raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) } } if msanenabled { if cas.kind == caseRecv && cas.elem != nil { msanwrite(cas.elem, c.elemtype.size) } else if cas.kind == caseSend { msanread(cas.elem, c.elemtype.size) } } selunlock(scases, lockorder) goto retc bufrecv: // can receive from buffer if raceenabled { if cas.elem != nil { raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc) } raceacquire(chanbuf(c, c.recvx)) racerelease(chanbuf(c, c.recvx)) } if msanenabled && cas.elem != nil { msanwrite(cas.elem, c.elemtype.size) } recvOK = true qp = chanbuf(c, c.recvx) if cas.elem != nil { typedmemmove(c.elemtype, cas.elem, qp) } typedmemclr(c.elemtype, qp) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.qcount-- selunlock(scases, lockorder) goto retc bufsend: // can send to buffer if raceenabled { raceacquire(chanbuf(c, c.sendx)) racerelease(chanbuf(c, c.sendx)) raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) } if msanenabled { msanread(cas.elem, c.elemtype.size) } typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem) c.sendx++ if c.sendx == c.dataqsiz { c.sendx = 0 } c.qcount++ selunlock(scases, lockorder) goto retc recv: // can receive from sleeping sender (sg) recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2) if debugSelect { print("syncrecv: cas0=", cas0, " c=", c, "\n") } recvOK = true goto retc rclose: // read at end of closed channel selunlock(scases, lockorder) recvOK = false if cas.elem != nil { typedmemclr(c.elemtype, cas.elem) } if raceenabled { raceacquire(unsafe.Pointer(c)) } goto retc send: // can send to a sleeping receiver (sg) if raceenabled { raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) } if msanenabled { msanread(cas.elem, c.elemtype.size) } send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2) if debugSelect { print("syncsend: cas0=", cas0, " c=", c, "\n") } goto retc retc: if cas.releasetime > 0 { blockevent(cas.releasetime-t0, 1) } return casi, recvOK sclose: // send on closed channel selunlock(scases, lockorder) panic(plainError("send on closed channel")) } func (c *hchan) sortkey() uintptr { // TODO(khr): if we have a moving garbage collector, we'll need to // change this function. return uintptr(unsafe.Pointer(c)) } // A runtimeSelect is a single case passed to rselect. // This must match ../reflect/value.go:/runtimeSelect type runtimeSelect struct { dir selectDir typ unsafe.Pointer // channel type (not used here) ch *hchan // channel val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) } // These values must match ../reflect/value.go:/SelectDir. type selectDir int const ( _ selectDir = iota selectSend // case Chan <- Send selectRecv // case <-Chan: selectDefault // default ) //go:linkname reflect_rselect reflect.rselect func reflect_rselect(cases []runtimeSelect) (int, bool) { if len(cases) == 0 { block() } sel := make([]scase, len(cases)) order := make([]uint16, 2*len(cases)) for i := range cases { rc := &cases[i] switch rc.dir { case selectDefault: sel[i] = scase{kind: caseDefault} case selectSend: sel[i] = scase{kind: caseSend, c: rc.ch, elem: rc.val} case selectRecv: sel[i] = scase{kind: caseRecv, c: rc.ch, elem: rc.val} } if raceenabled || msanenabled { selectsetpc(&sel[i]) } } return selectgo(&sel[0], &order[0], len(cases)) } func (q *waitq) dequeueSudoG(sgp *sudog) { x := sgp.prev y := sgp.next if x != nil { if y != nil { // middle of queue x.next = y y.prev = x sgp.next = nil sgp.prev = nil return } // end of queue x.next = nil q.last = x sgp.prev = nil return } if y != nil { // start of queue y.prev = nil q.first = y sgp.next = nil return } // x==y==nil. Either sgp is the only element in the queue, // or it has already been removed. Use q.first to disambiguate. if q.first == sgp { q.first = nil q.last = nil } }