// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Copy of math/sqrt.go, here for use by ARM softfloat. // Modified to not use any floating point arithmetic so // that we don't clobber any floating-point registers // while emulating the sqrt instruction. package runtime // The original C code and the long comment below are // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and // came with this notice. The go code is a simplified // version of the original C. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // __ieee754_sqrt(x) // Return correctly rounded sqrt. // ----------------------------------------- // | Use the hardware sqrt if you have one | // ----------------------------------------- // Method: // Bit by bit method using integer arithmetic. (Slow, but portable) // 1. Normalization // Scale x to y in [1,4) with even powers of 2: // find an integer k such that 1 <= (y=x*2**(2k)) < 4, then // sqrt(x) = 2**k * sqrt(y) // 2. Bit by bit computation // Let q = sqrt(y) truncated to i bit after binary point (q = 1), // i 0 // i+1 2 // s = 2*q , and y = 2 * ( y - q ). (1) // i i i i // // To compute q from q , one checks whether // i+1 i // // -(i+1) 2 // (q + 2 ) <= y. (2) // i // -(i+1) // If (2) is false, then q = q ; otherwise q = q + 2 . // i+1 i i+1 i // // With some algebraic manipulation, it is not difficult to see // that (2) is equivalent to // -(i+1) // s + 2 <= y (3) // i i // // The advantage of (3) is that s and y can be computed by // i i // the following recurrence formula: // if (3) is false // // s = s , y = y ; (4) // i+1 i i+1 i // // otherwise, // -i -(i+1) // s = s + 2 , y = y - s - 2 (5) // i+1 i i+1 i i // // One may easily use induction to prove (4) and (5). // Note. Since the left hand side of (3) contain only i+2 bits, // it does not necessary to do a full (53-bit) comparison // in (3). // 3. Final rounding // After generating the 53 bits result, we compute one more bit. // Together with the remainder, we can decide whether the // result is exact, bigger than 1/2ulp, or less than 1/2ulp // (it will never equal to 1/2ulp). // The rounding mode can be detected by checking whether // huge + tiny is equal to huge, and whether huge - tiny is // equal to huge for some floating point number "huge" and "tiny". // // // Notes: Rounding mode detection omitted. const ( float64Mask = 0x7FF float64Shift = 64 - 11 - 1 float64Bias = 1023 float64NaN = 0x7FF8000000000001 float64Inf = 0x7FF0000000000000 maxFloat64 = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52 ) // isnanu returns whether ix represents a NaN floating point number. func isnanu(ix uint64) bool { exp := (ix >> float64Shift) & float64Mask sig := ix << (64 - float64Shift) >> (64 - float64Shift) return exp == float64Mask && sig != 0 } func sqrt(ix uint64) uint64 { // special cases switch { case ix == 0 || ix == 1<<63: // x == 0 return ix case isnanu(ix): // x != x return ix case ix&(1<<63) != 0: // x < 0 return float64NaN case ix == float64Inf: // x > MaxFloat return ix } // normalize x exp := int((ix >> float64Shift) & float64Mask) if exp == 0 { // subnormal x for ix&(1<>= 1 // exp = exp/2, exponent of square root // generate sqrt(x) bit by bit ix <<= 1 var q, s uint64 // q = sqrt(x) r := uint64(1 << (float64Shift + 1)) // r = moving bit from MSB to LSB for r != 0 { t := s + r if t <= ix { s = t + r ix -= t q += r } ix <<= 1 r >>= 1 } // final rounding if ix != 0 { // remainder, result not exact q += q & 1 // round according to extra bit } ix = q>>1 + uint64(exp-1+float64Bias)<