// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build appengine package build import ( "bytes" "fmt" "html/template" "net/http" "sort" "appengine" "appengine/datastore" ) func init() { http.HandleFunc("/perflearn", perfLearnHandler) } const ( learnPercentile = 0.95 learnSignalMultiplier = 1.2 learnMinSignal = 0.5 ) func perfLearnHandler(w http.ResponseWriter, r *http.Request) { d := dashboardForRequest(r) c := d.Context(appengine.NewContext(r)) pc, err := GetPerfConfig(c, r) if err != nil { logErr(w, r, err) return } p, err := GetPackage(c, "") if err != nil { logErr(w, r, err) return } update := r.FormValue("update") != "" noise := make(map[string]string) data := &perfLearnData{} commits, err := GetCommits(c, 0, p.NextNum) if err != nil { logErr(w, r, err) return } for _, builder := range pc.BuildersForBenchmark("") { for _, benchmark := range pc.BenchmarksForBuilder(builder) { for _, metric := range pc.MetricsForBenchmark(benchmark) { for _, procs := range pc.ProcList(builder) { values, err := GetPerfMetricsForCommits(c, builder, fmt.Sprintf("%v-%v", benchmark, procs), metric, 0, p.NextNum) if err != nil { logErr(w, r, err) return } var dd []float64 last := uint64(0) for i, v := range values { if v == 0 { if commits[i].NeedsBenchmarking { last = 0 } continue } if last != 0 { v1 := v if v1 < last { v1, last = last, v1 } diff := float64(v1)/float64(last)*100 - 100 dd = append(dd, diff) } last = v } if len(dd) == 0 { continue } sort.Float64s(dd) baseIdx := int(float64(len(dd)) * learnPercentile) baseVal := dd[baseIdx] signalVal := baseVal * learnSignalMultiplier if signalVal < learnMinSignal { signalVal = learnMinSignal } signalIdx := -1 noiseNum := 0 signalNum := 0 var diffs []*perfLearnDiff for i, d := range dd { if d > 3*signalVal { d = 3 * signalVal } diffs = append(diffs, &perfLearnDiff{Num: i, Val: d}) if signalIdx == -1 && d >= signalVal { signalIdx = i } if d < signalVal { noiseNum++ } else { signalNum++ } } diffs[baseIdx].Hint = "95%" if signalIdx != -1 { diffs[signalIdx].Hint = "signal" } diffs = diffs[len(diffs)*4/5:] name := fmt.Sprintf("%v/%v-%v/%v", builder, benchmark, procs, metric) data.Entries = append(data.Entries, &perfLearnEntry{len(data.Entries), name, baseVal, noiseNum, signalVal, signalNum, diffs}) if len(dd) >= 100 || r.FormValue("force") != "" { nname := fmt.Sprintf("%v|%v-%v", builder, benchmark, procs) n := noise[nname] + fmt.Sprintf("|%v=%.2f", metric, signalVal) noise[nname] = n } } } } } if update { var noiseLevels []string for k, v := range noise { noiseLevels = append(noiseLevels, k+v) } tx := func(c appengine.Context) error { pc, err := GetPerfConfig(c, r) if err != nil { return err } pc.NoiseLevels = noiseLevels if _, err := datastore.Put(c, PerfConfigKey(c), pc); err != nil { return fmt.Errorf("putting PerfConfig: %v", err) } return nil } if err := datastore.RunInTransaction(c, tx, nil); err != nil { logErr(w, r, err) return } } var buf bytes.Buffer if err := perfLearnTemplate.Execute(&buf, data); err != nil { logErr(w, r, err) return } buf.WriteTo(w) } var perfLearnTemplate = template.Must( template.New("perf_learn.html").Funcs(tmplFuncs).ParseFiles("build/perf_learn.html"), ) type perfLearnData struct { Entries []*perfLearnEntry } type perfLearnEntry struct { Num int Name string BaseVal float64 NoiseNum int SignalVal float64 SignalNum int Diffs []*perfLearnDiff } type perfLearnDiff struct { Num int Val float64 Hint string }