// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package oracle import ( "fmt" "go/ast" "go/token" "sort" "code.google.com/p/go.tools/astutil" "code.google.com/p/go.tools/go/types" "code.google.com/p/go.tools/importer" "code.google.com/p/go.tools/oracle/serial" "code.google.com/p/go.tools/pointer" "code.google.com/p/go.tools/ssa" ) // pointsto runs the pointer analysis on the selected expression, // and reports its points-to set (for a pointer-like expression) // or its dynamic types (for an interface, reflect.Value, or // reflect.Type expression) and their points-to sets. // // All printed sets are sorted to ensure determinism. // func pointsto(o *Oracle, qpos *QueryPos) (queryResult, error) { path, action := findInterestingNode(qpos.info, qpos.path) if action != actionExpr { return nil, fmt.Errorf("pointer analysis wants an expression; got %s", astutil.NodeDescription(qpos.path[0])) } var expr ast.Expr var obj types.Object switch n := path[0].(type) { case *ast.ValueSpec: // ambiguous ValueSpec containing multiple names return nil, fmt.Errorf("multiple value specification") case *ast.Ident: obj = qpos.info.ObjectOf(n) expr = n case ast.Expr: expr = n default: // TODO(adonovan): is this reachable? return nil, fmt.Errorf("unexpected AST for expr: %T", n) } // Reject non-pointerlike types (includes all constants). typ := qpos.info.TypeOf(expr) if !pointer.CanPoint(typ) { return nil, fmt.Errorf("pointer analysis wants an expression of reference type; got %s", typ) } // Determine the ssa.Value for the expression. var value ssa.Value var isAddr bool var err error if obj != nil { // def/ref of func/var object value, isAddr, err = ssaValueForIdent(o.prog, qpos.info, obj, path) } else { value, isAddr, err = ssaValueForExpr(o.prog, qpos.info, path) } if err != nil { return nil, err // e.g. trivially dead code } // Run the pointer analysis. ptrs, err := runPTA(o, value, isAddr) if err != nil { return nil, err // e.g. analytically unreachable } return &pointstoResult{ qpos: qpos, typ: typ, ptrs: ptrs, }, nil } // ssaValueForIdent returns the ssa.Value for the ast.Ident whose path // to the root of the AST is path. isAddr reports whether the // ssa.Value is the address denoted by the ast.Ident, not its value. // func ssaValueForIdent(prog *ssa.Program, qinfo *importer.PackageInfo, obj types.Object, path []ast.Node) (value ssa.Value, isAddr bool, err error) { switch obj := obj.(type) { case *types.Var: pkg := prog.Package(qinfo.Pkg) pkg.Build() if v, addr := prog.VarValue(obj, pkg, path); v != nil { return v, addr, nil } return nil, false, fmt.Errorf("can't locate SSA Value for var %s", obj.Name()) case *types.Func: return prog.FuncValue(obj), false, nil } panic(obj) } // ssaValueForExpr returns the ssa.Value of the non-ast.Ident // expression whose path to the root of the AST is path. // func ssaValueForExpr(prog *ssa.Program, qinfo *importer.PackageInfo, path []ast.Node) (value ssa.Value, isAddr bool, err error) { pkg := prog.Package(qinfo.Pkg) pkg.SetDebugMode(true) pkg.Build() fn := ssa.EnclosingFunction(pkg, path) if fn == nil { return nil, false, fmt.Errorf("no SSA function built for this location (dead code?)") } if v, addr := fn.ValueForExpr(path[0].(ast.Expr)); v != nil { return v, addr, nil } return nil, false, fmt.Errorf("can't locate SSA Value for expression in %s", fn) } // runPTA runs the pointer analysis of the selected SSA value or address. func runPTA(o *Oracle, v ssa.Value, isAddr bool) (ptrs []pointerResult, err error) { buildSSA(o) if isAddr { o.ptaConfig.AddIndirectQuery(v) } else { o.ptaConfig.AddQuery(v) } ptares := ptrAnalysis(o) // Combine the PT sets from all contexts. var pointers []pointer.Pointer if isAddr { pointers = ptares.IndirectQueries[v] } else { pointers = ptares.Queries[v] } if pointers == nil { return nil, fmt.Errorf("pointer analysis did not find expression (dead code?)") } pts := pointer.PointsToCombined(pointers) if pointer.CanHaveDynamicTypes(v.Type()) { // Show concrete types for interface/reflect.Value expression. if concs := pts.DynamicTypes(); concs.Len() > 0 { concs.Iterate(func(conc types.Type, pta interface{}) { combined := pointer.PointsToCombined(pta.([]pointer.Pointer)) labels := combined.Labels() sort.Sort(byPosAndString(labels)) // to ensure determinism ptrs = append(ptrs, pointerResult{conc, labels}) }) } } else { // Show labels for other expressions. labels := pts.Labels() sort.Sort(byPosAndString(labels)) // to ensure determinism ptrs = append(ptrs, pointerResult{v.Type(), labels}) } sort.Sort(byTypeString(ptrs)) // to ensure determinism return ptrs, nil } type pointerResult struct { typ types.Type // type of the pointer (always concrete) labels []*pointer.Label // set of labels } type pointstoResult struct { qpos *QueryPos typ types.Type // type of expression ptrs []pointerResult // pointer info (typ is concrete => len==1) } func (r *pointstoResult) display(printf printfFunc) { if pointer.CanHaveDynamicTypes(r.typ) { // Show concrete types for interface, reflect.Type or // reflect.Value expression. if len(r.ptrs) > 0 { printf(r.qpos, "this %s may contain these dynamic types:", r.qpos.TypeString(r.typ)) for _, ptr := range r.ptrs { var obj types.Object if nt, ok := deref(ptr.typ).(*types.Named); ok { obj = nt.Obj() } if len(ptr.labels) > 0 { printf(obj, "\t%s, may point to:", r.qpos.TypeString(ptr.typ)) printLabels(printf, ptr.labels, "\t\t") } else { printf(obj, "\t%s", r.qpos.TypeString(ptr.typ)) } } } else { printf(r.qpos, "this %s cannot contain any dynamic types.", r.typ) } } else { // Show labels for other expressions. if ptr := r.ptrs[0]; len(ptr.labels) > 0 { printf(r.qpos, "this %s may point to these objects:", r.qpos.TypeString(r.typ)) printLabels(printf, ptr.labels, "\t") } else { printf(r.qpos, "this %s may not point to anything.", r.qpos.TypeString(r.typ)) } } } func (r *pointstoResult) toSerial(res *serial.Result, fset *token.FileSet) { var pts []serial.PointsTo for _, ptr := range r.ptrs { var namePos string if nt, ok := deref(ptr.typ).(*types.Named); ok { namePos = fset.Position(nt.Obj().Pos()).String() } var labels []serial.PointsToLabel for _, l := range ptr.labels { labels = append(labels, serial.PointsToLabel{ Pos: fset.Position(l.Pos()).String(), Desc: l.String(), }) } pts = append(pts, serial.PointsTo{ Type: r.qpos.TypeString(ptr.typ), NamePos: namePos, Labels: labels, }) } res.PointsTo = pts } type byTypeString []pointerResult func (a byTypeString) Len() int { return len(a) } func (a byTypeString) Less(i, j int) bool { return a[i].typ.String() < a[j].typ.String() } func (a byTypeString) Swap(i, j int) { a[i], a[j] = a[j], a[i] } type byPosAndString []*pointer.Label func (a byPosAndString) Len() int { return len(a) } func (a byPosAndString) Less(i, j int) bool { cmp := a[i].Pos() - a[j].Pos() return cmp < 0 || (cmp == 0 && a[i].String() < a[j].String()) } func (a byPosAndString) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func printLabels(printf printfFunc, labels []*pointer.Label, prefix string) { // TODO(adonovan): due to context-sensitivity, many of these // labels may differ only by context, which isn't apparent. for _, label := range labels { printf(label, "%s%s", prefix, label) } }