package ssa // This file implements the Function and BasicBlock types. import ( "fmt" "go/ast" "go/token" "io" "os" "strings" "code.google.com/p/go.tools/go/types" ) // addEdge adds a control-flow graph edge from from to to. func addEdge(from, to *BasicBlock) { from.Succs = append(from.Succs, to) to.Preds = append(to.Preds, from) } // Parent returns the function that contains block b. func (b *BasicBlock) Parent() *Function { return b.parent } // String returns a human-readable label of this block. // It is not guaranteed unique within the function. // func (b *BasicBlock) String() string { return fmt.Sprintf("%d.%s", b.Index, b.Comment) } // emit appends an instruction to the current basic block. // If the instruction defines a Value, it is returned. // func (b *BasicBlock) emit(i Instruction) Value { i.SetBlock(b) b.Instrs = append(b.Instrs, i) v, _ := i.(Value) return v } // predIndex returns the i such that b.Preds[i] == c or panics if // there is none. func (b *BasicBlock) predIndex(c *BasicBlock) int { for i, pred := range b.Preds { if pred == c { return i } } panic(fmt.Sprintf("no edge %s -> %s", c, b)) } // hasPhi returns true if b.Instrs contains φ-nodes. func (b *BasicBlock) hasPhi() bool { _, ok := b.Instrs[0].(*Phi) return ok } // phis returns the prefix of b.Instrs containing all the block's φ-nodes. func (b *BasicBlock) phis() []Instruction { for i, instr := range b.Instrs { if _, ok := instr.(*Phi); !ok { return b.Instrs[:i] } } return nil // unreachable in well-formed blocks } // replacePred replaces all occurrences of p in b's predecessor list with q. // Ordinarily there should be at most one. // func (b *BasicBlock) replacePred(p, q *BasicBlock) { for i, pred := range b.Preds { if pred == p { b.Preds[i] = q } } } // replaceSucc replaces all occurrences of p in b's successor list with q. // Ordinarily there should be at most one. // func (b *BasicBlock) replaceSucc(p, q *BasicBlock) { for i, succ := range b.Succs { if succ == p { b.Succs[i] = q } } } // removePred removes all occurrences of p in b's // predecessor list and φ-nodes. // Ordinarily there should be at most one. // func (b *BasicBlock) removePred(p *BasicBlock) { phis := b.phis() // We must preserve edge order for φ-nodes. j := 0 for i, pred := range b.Preds { if pred != p { b.Preds[j] = b.Preds[i] // Strike out φ-edge too. for _, instr := range phis { phi := instr.(*Phi) phi.Edges[j] = phi.Edges[i] } j++ } } // Nil out b.Preds[j:] and φ-edges[j:] to aid GC. for i := j; i < len(b.Preds); i++ { b.Preds[i] = nil for _, instr := range phis { instr.(*Phi).Edges[i] = nil } } b.Preds = b.Preds[:j] for _, instr := range phis { phi := instr.(*Phi) phi.Edges = phi.Edges[:j] } } // Destinations associated with unlabelled for/switch/select stmts. // We push/pop one of these as we enter/leave each construct and for // each BranchStmt we scan for the innermost target of the right type. // type targets struct { tail *targets // rest of stack _break *BasicBlock _continue *BasicBlock _fallthrough *BasicBlock } // Destinations associated with a labelled block. // We populate these as labels are encountered in forward gotos or // labelled statements. // type lblock struct { _goto *BasicBlock _break *BasicBlock _continue *BasicBlock } // funcSyntax holds the syntax tree for the function declaration and body. type funcSyntax struct { recvField *ast.FieldList paramFields *ast.FieldList resultFields *ast.FieldList body *ast.BlockStmt } // labelledBlock returns the branch target associated with the // specified label, creating it if needed. // func (f *Function) labelledBlock(label *ast.Ident) *lblock { lb := f.lblocks[label.Obj] if lb == nil { lb = &lblock{_goto: f.newBasicBlock(label.Name)} if f.lblocks == nil { f.lblocks = make(map[*ast.Object]*lblock) } f.lblocks[label.Obj] = lb } return lb } // addParam adds a (non-escaping) parameter to f.Params of the // specified name, type and source position. // func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter { v := &Parameter{ name: name, typ: typ, pos: pos, parent: f, } f.Params = append(f.Params, v) return v } func (f *Function) addParamObj(obj types.Object) *Parameter { name := obj.Name() if name == "" { name = fmt.Sprintf("arg%d", len(f.Params)) } return f.addParam(name, obj.Type(), obj.Pos()) } // addSpilledParam declares a parameter that is pre-spilled to the // stack; the function body will load/store the spilled location. // Subsequent lifting will eliminate spills where possible. // func (f *Function) addSpilledParam(obj types.Object) { param := f.addParamObj(obj) spill := &Alloc{ name: obj.Name() + "~", // "~" means "spilled" typ: pointer(obj.Type()), pos: obj.Pos(), } f.objects[obj] = spill f.Locals = append(f.Locals, spill) f.emit(spill) f.emit(&Store{Addr: spill, Val: param}) } // startBody initializes the function prior to generating SSA code for its body. // Precondition: f.Type() already set. // func (f *Function) startBody() { f.currentBlock = f.newBasicBlock("entry") f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init } // createSyntacticParams populates f.Params and generates code (spills // and named result locals) for all the parameters declared in the // syntax. In addition it populates the f.objects mapping. // // Preconditions: // f.syntax != nil, i.e. this is a Go source function. // f.startBody() was called. // Postcondition: // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0) // func (f *Function) createSyntacticParams() { // Receiver (at most one inner iteration). if f.syntax.recvField != nil { for _, field := range f.syntax.recvField.List { for _, n := range field.Names { f.addSpilledParam(f.Pkg.objectOf(n)) } // Anonymous receiver? No need to spill. if field.Names == nil { f.addParamObj(f.Signature.Recv()) } } } // Parameters. if f.syntax.paramFields != nil { n := len(f.Params) // 1 if has recv, 0 otherwise for _, field := range f.syntax.paramFields.List { for _, n := range field.Names { f.addSpilledParam(f.Pkg.objectOf(n)) } // Anonymous parameter? No need to spill. if field.Names == nil { f.addParamObj(f.Signature.Params().At(len(f.Params) - n)) } } } // Named results. if f.syntax.resultFields != nil { for _, field := range f.syntax.resultFields.List { // Implicit "var" decl of locals for named results. for _, n := range field.Names { f.namedResults = append(f.namedResults, f.addNamedLocal(f.Pkg.objectOf(n))) } } } } // numberRegisters assigns numbers to all SSA registers // (value-defining Instructions) in f, to aid debugging. // (Non-Instruction Values are named at construction.) // NB: named Allocs retain their existing name. // TODO(adonovan): when we have source position info, // preserve names only for source locals. // func numberRegisters(f *Function) { a, v := 0, 0 for _, b := range f.Blocks { for _, instr := range b.Instrs { switch instr := instr.(type) { case *Alloc: // Allocs may be named at birth. if instr.name == "" { instr.name = fmt.Sprintf("a%d", a) a++ } case Value: instr.(interface { setNum(int) }).setNum(v) v++ } } } } // buildReferrers populates the def/use information in all non-nil // Value.Referrers slice. // Precondition: all such slices are initially empty. func buildReferrers(f *Function) { var rands []*Value for _, b := range f.Blocks { for _, instr := range b.Instrs { rands = instr.Operands(rands[:0]) // recycle storage for _, rand := range rands { if r := *rand; r != nil { if ref := r.Referrers(); ref != nil { *ref = append(*ref, instr) } } } } } } // finishBody() finalizes the function after SSA code generation of its body. func (f *Function) finishBody() { f.objects = nil f.namedResults = nil f.currentBlock = nil f.lblocks = nil f.syntax = nil // Remove any f.Locals that are now heap-allocated. j := 0 for _, l := range f.Locals { if !l.Heap { f.Locals[j] = l j++ } } // Nil out f.Locals[j:] to aid GC. for i := j; i < len(f.Locals); i++ { f.Locals[i] = nil } f.Locals = f.Locals[:j] optimizeBlocks(f) buildReferrers(f) if f.Prog.mode&NaiveForm == 0 { // For debugging pre-state of lifting pass: // numberRegisters(f) // f.DumpTo(os.Stderr) lift(f) } numberRegisters(f) if f.Prog.mode&LogFunctions != 0 { f.DumpTo(os.Stderr) } if f.Prog.mode&SanityCheckFunctions != 0 { MustSanityCheck(f, nil) } } // removeNilBlocks eliminates nils from f.Blocks and updates each // BasicBlock.Index. Use this after any pass that may delete blocks. // func (f *Function) removeNilBlocks() { j := 0 for _, b := range f.Blocks { if b != nil { b.Index = j f.Blocks[j] = b j++ } } // Nil out f.Blocks[j:] to aid GC. for i := j; i < len(f.Blocks); i++ { f.Blocks[i] = nil } f.Blocks = f.Blocks[:j] } // addNamedLocal creates a local variable, adds it to function f and // returns it. Its name and type are taken from obj. Subsequent // calls to f.lookup(obj) will return the same local. // // Precondition: f.syntax != nil (i.e. a Go source function). // func (f *Function) addNamedLocal(obj types.Object) *Alloc { l := f.addLocal(obj.Type(), obj.Pos()) l.name = obj.Name() f.objects[obj] = l return l } // addLocal creates an anonymous local variable of type typ, adds it // to function f and returns it. pos is the optional source location. // func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc { v := &Alloc{typ: pointer(typ), pos: pos} f.Locals = append(f.Locals, v) f.emit(v) return v } // lookup returns the address of the named variable identified by obj // that is local to function f or one of its enclosing functions. // If escaping, the reference comes from a potentially escaping pointer // expression and the referent must be heap-allocated. // func (f *Function) lookup(obj types.Object, escaping bool) Value { if v, ok := f.objects[obj]; ok { if alloc, ok := v.(*Alloc); ok && escaping { alloc.Heap = true } return v // function-local var (address) } // Definition must be in an enclosing function; // plumb it through intervening closures. if f.Enclosing == nil { panic("no Value for type.Object " + obj.Name()) } outer := f.Enclosing.lookup(obj, true) // escaping v := &Capture{ name: outer.Name(), typ: outer.Type(), pos: outer.Pos(), outer: outer, parent: f, } f.objects[obj] = v f.FreeVars = append(f.FreeVars, v) return v } // emit emits the specified instruction to function f, updating the // control-flow graph if required. // func (f *Function) emit(instr Instruction) Value { return f.currentBlock.emit(instr) } // FullName returns the full name of this function, qualified by // package name, receiver type, etc. // // The specific formatting rules are not guaranteed and may change. // // Examples: // "math.IsNaN" // a package-level function // "IsNaN" // intra-package reference to same // "(*sync.WaitGroup).Add" // a declared method // "(*exp/ssa.Ret).Block" // a promotion wrapper method // "(ssa.Instruction).Block" // an interface method wrapper // "func@5.32" // an anonymous function // "bound$(*T).f" // a bound method wrapper // func (f *Function) FullName() string { return f.fullName(nil) } // Like FullName, but if from==f.Pkg, suppress package qualification. func (f *Function) fullName(from *Package) string { // TODO(adonovan): expose less fragile case discrimination. // Anonymous? if f.Enclosing != nil { return f.name } recv := f.Signature.Recv() // Synthetic? if f.Pkg == nil { var recvType types.Type if recv != nil { recvType = recv.Type() // promotion wrapper } else if strings.HasPrefix(f.name, "bound$") { return f.name // bound method wrapper } else { recvType = f.Params[0].Type() // interface method wrapper } return fmt.Sprintf("(%s).%s", recvType, f.name) } // Declared method? if recv != nil { return fmt.Sprintf("(%s).%s", recv.Type(), f.name) } // Package-level function. // Prefix with package name for cross-package references only. if from != f.Pkg { return fmt.Sprintf("%s.%s", f.Pkg.Types.Path(), f.name) } return f.name } // writeSignature writes to w the signature sig in declaration syntax. // Derived from types.Signature.String(). // func writeSignature(w io.Writer, name string, sig *types.Signature, params []*Parameter) { io.WriteString(w, "func ") if recv := sig.Recv(); recv != nil { io.WriteString(w, "(") if n := params[0].Name(); n != "" { io.WriteString(w, n) io.WriteString(w, " ") } io.WriteString(w, params[0].Type().String()) io.WriteString(w, ") ") params = params[1:] } io.WriteString(w, name) io.WriteString(w, "(") for i, v := range params { if i > 0 { io.WriteString(w, ", ") } io.WriteString(w, v.Name()) io.WriteString(w, " ") if sig.IsVariadic() && i == len(params)-1 { io.WriteString(w, "...") io.WriteString(w, v.Type().Underlying().(*types.Slice).Elem().String()) } else { io.WriteString(w, v.Type().String()) } } io.WriteString(w, ")") if n := sig.Results().Len(); n > 0 { io.WriteString(w, " ") r := sig.Results() if n == 1 && r.At(0).Name() == "" { io.WriteString(w, r.At(0).Type().String()) } else { io.WriteString(w, r.String()) } } } // DumpTo prints to w a human readable "disassembly" of the SSA code of // all basic blocks of function f. // func (f *Function) DumpTo(w io.Writer) { fmt.Fprintf(w, "# Name: %s\n", f.FullName()) if pos := f.Pos(); pos.IsValid() { fmt.Fprintf(w, "# Declared at %s\n", f.Prog.Files.Position(pos)) } else { fmt.Fprintln(w, "# Synthetic") } if f.Enclosing != nil { fmt.Fprintf(w, "# Parent: %s\n", f.Enclosing.Name()) } if f.FreeVars != nil { io.WriteString(w, "# Free variables:\n") for i, fv := range f.FreeVars { fmt.Fprintf(w, "# % 3d:\t%s %s\n", i, fv.Name(), fv.Type()) } } if len(f.Locals) > 0 { io.WriteString(w, "# Locals:\n") for i, l := range f.Locals { fmt.Fprintf(w, "# % 3d:\t%s %s\n", i, l.Name(), l.Type().Deref()) } } writeSignature(w, f.Name(), f.Signature, f.Params) io.WriteString(w, ":\n") if f.Blocks == nil { io.WriteString(w, "\t(external)\n") } // NB. column calculations are confused by non-ASCII characters. const punchcard = 80 // for old time's sake. for _, b := range f.Blocks { if b == nil { // Corrupt CFG. fmt.Fprintf(w, ".nil:\n") continue } n, _ := fmt.Fprintf(w, ".%s:", b) fmt.Fprintf(w, "%*sP:%d S:%d\n", punchcard-1-n-len("P:n S:n"), "", len(b.Preds), len(b.Succs)) if false { // CFG debugging fmt.Fprintf(w, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs) } for _, instr := range b.Instrs { io.WriteString(w, "\t") switch v := instr.(type) { case Value: l := punchcard // Left-align the instruction. if name := v.Name(); name != "" { n, _ := fmt.Fprintf(w, "%s = ", name) l -= n } n, _ := io.WriteString(w, instr.String()) l -= n // Right-align the type. if t := v.Type(); t != nil { fmt.Fprintf(w, " %*s", l-10, t) } case nil: // Be robust against bad transforms. io.WriteString(w, "") default: io.WriteString(w, instr.String()) } io.WriteString(w, "\n") } } fmt.Fprintf(w, "\n") } // newBasicBlock adds to f a new basic block and returns it. It does // not automatically become the current block for subsequent calls to emit. // comment is an optional string for more readable debugging output. // func (f *Function) newBasicBlock(comment string) *BasicBlock { b := &BasicBlock{ Index: len(f.Blocks), Comment: comment, parent: f, } b.Succs = b.succs2[:0] f.Blocks = append(f.Blocks, b) return b } // NewFunction returns a new synthetic Function instance with its name // and signature fields set as specified. // // The caller is responsible for initializing the remaining fields of // the function object, e.g. Pkg, Prog, Params, Blocks. // // It is practically impossible for clients to construct well-formed // SSA functions/packages/programs directly, so we assume this is the // job of the Builder alone. NewFunction exists to provide clients a // little flexibility. For example, analysis tools may wish to // construct fake Functions for the root of the callgraph, a fake // "reflect" package, etc. // // TODO(adonovan): think harder about the API here. // func NewFunction(name string, sig *types.Signature) *Function { return &Function{name: name, Signature: sig} }