// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // IP address manipulations // // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes. // An IPv4 address can be converted to an IPv6 address by // adding a canonical prefix (10 zeros, 2 0xFFs). // This library accepts either size of byte array but always // returns 16-byte addresses. package net // IP address lengths (bytes). const ( IPv4len = 4 IPv6len = 16 ) // An IP is a single IP address, an array of bytes. // Functions in this package accept either 4-byte (IP v4) // or 16-byte (IP v6) arrays as input. Unless otherwise // specified, functions in this package always return // IP addresses in 16-byte form using the canonical // embedding. // // Note that in this documentation, referring to an // IP address as an IPv4 address or an IPv6 address // is a semantic property of the address, not just the // length of the byte array: a 16-byte array can still // be an IPv4 address. type IP []byte // An IP mask is an IP address. type IPMask []byte // IPv4 returns the IP address (in 16-byte form) of the // IPv4 address a.b.c.d. func IPv4(a, b, c, d byte) IP { p := make(IP, IPv6len) for i := 0; i < 10; i++ { p[i] = 0 } p[10] = 0xff p[11] = 0xff p[12] = a p[13] = b p[14] = c p[15] = d return p } // Well-known IPv4 addresses var ( IPv4bcast = IPv4(255, 255, 255, 255) // broadcast IPv4allsys = IPv4(224, 0, 0, 1) // all systems IPv4allrouter = IPv4(224, 0, 0, 2) // all routers IPv4zero = IPv4(0, 0, 0, 0) // all zeros ) // Well-known IPv6 addresses var ( IPzero = make(IP, IPv6len) // all zeros ) // Is p all zeros? func isZeros(p IP) bool { for i := 0; i < len(p); i++ { if p[i] != 0 { return false } } return true } // To4 converts the IPv4 address ip to a 4-byte representation. // If ip is not an IPv4 address, To4 returns nil. func (ip IP) To4() IP { if len(ip) == IPv4len { return ip } if len(ip) == IPv6len && isZeros(ip[0:10]) && ip[10] == 0xff && ip[11] == 0xff { return ip[12:16] } return nil } // To16 converts the IP address ip to a 16-byte representation. // If ip is not an IP address (it is the wrong length), To16 returns nil. func (ip IP) To16() IP { if len(ip) == IPv4len { return IPv4(ip[0], ip[1], ip[2], ip[3]) } if len(ip) == IPv6len { return ip } return nil } // Default route masks for IPv4. var ( classAMask = IPMask(IPv4(0xff, 0, 0, 0)) classBMask = IPMask(IPv4(0xff, 0xff, 0, 0)) classCMask = IPMask(IPv4(0xff, 0xff, 0xff, 0)) ) // DefaultMask returns the default IP mask for the IP address ip. // Only IPv4 addresses have default masks; DefaultMask returns // nil if ip is not a valid IPv4 address. func (ip IP) DefaultMask() IPMask { if ip = ip.To4(); ip == nil { return nil } switch true { case ip[0] < 0x80: return classAMask case ip[0] < 0xC0: return classBMask default: return classCMask } return nil // not reached } // Mask returns the result of masking the IP address ip with mask. func (ip IP) Mask(mask IPMask) IP { n := len(ip) if n != len(mask) { return nil } out := make(IP, n) for i := 0; i < n; i++ { out[i] = ip[i] & mask[i] } return out } // Convert i to decimal string. func itod(i uint) string { if i == 0 { return "0" } // Assemble decimal in reverse order. var b [32]byte bp := len(b) for ; i > 0; i /= 10 { bp-- b[bp] = byte(i%10) + '0' } return string(b[bp:]) } // Convert i to hexadecimal string. func itox(i uint) string { if i == 0 { return "0" } // Assemble hexadecimal in reverse order. var b [32]byte bp := len(b) for ; i > 0; i /= 16 { bp-- b[bp] = "0123456789abcdef"[byte(i%16)] } return string(b[bp:]) } // String returns the string form of the IP address ip. // If the address is an IPv4 address, the string representation // is dotted decimal ("74.125.19.99"). Otherwise the representation // is IPv6 ("2001:4860:0:2001::68"). func (ip IP) String() string { p := ip if len(ip) == 0 { return "" } // If IPv4, use dotted notation. if p4 := p.To4(); len(p4) == 4 { return itod(uint(p4[0])) + "." + itod(uint(p4[1])) + "." + itod(uint(p4[2])) + "." + itod(uint(p4[3])) } if len(p) != IPv6len { return "?" } // Find longest run of zeros. e0 := -1 e1 := -1 for i := 0; i < 16; i += 2 { j := i for j < 16 && p[j] == 0 && p[j+1] == 0 { j += 2 } if j > i && j-i > e1-e0 { e0 = i e1 = j } } // Print with possible :: in place of run of zeros var s string for i := 0; i < 16; i += 2 { if i == e0 { s += "::" i = e1 if i >= 16 { break } } else if i > 0 { s += ":" } s += itox((uint(p[i]) << 8) | uint(p[i+1])) } return s } // If mask is a sequence of 1 bits followed by 0 bits, // return the number of 1 bits. func simpleMaskLength(mask IPMask) int { var i int for i = 0; i < len(mask); i++ { if mask[i] != 0xFF { break } } n := 8 * i v := mask[i] for v&0x80 != 0 { n++ v <<= 1 } if v != 0 { return -1 } for i++; i < len(mask); i++ { if mask[i] != 0 { return -1 } } return n } // String returns the string representation of mask. // If the mask is in the canonical form--ones followed by zeros--the // string representation is just the decimal number of ones. // If the mask is in a non-canonical form, it is formatted // as an IP address. func (mask IPMask) String() string { switch len(mask) { case 4: n := simpleMaskLength(mask) if n >= 0 { return itod(uint(n + (IPv6len-IPv4len)*8)) } case 16: n := simpleMaskLength(mask) if n >= 0 { return itod(uint(n)) } } return IP(mask).String() } // Parse IPv4 address (d.d.d.d). func parseIPv4(s string) IP { var p [IPv4len]byte i := 0 for j := 0; j < IPv4len; j++ { if i >= len(s) { // Missing octets. return nil } if j > 0 { if s[i] != '.' { return nil } i++ } var ( n int ok bool ) n, i, ok = dtoi(s, i) if !ok || n > 0xFF { return nil } p[j] = byte(n) } if i != len(s) { return nil } return IPv4(p[0], p[1], p[2], p[3]) } // Parse IPv6 address. Many forms. // The basic form is a sequence of eight colon-separated // 16-bit hex numbers separated by colons, // as in 0123:4567:89ab:cdef:0123:4567:89ab:cdef. // Two exceptions: // * A run of zeros can be replaced with "::". // * The last 32 bits can be in IPv4 form. // Thus, ::ffff:1.2.3.4 is the IPv4 address 1.2.3.4. func parseIPv6(s string) IP { p := make(IP, 16) ellipsis := -1 // position of ellipsis in p i := 0 // index in string s // Might have leading ellipsis if len(s) >= 2 && s[0] == ':' && s[1] == ':' { ellipsis = 0 i = 2 // Might be only ellipsis if i == len(s) { return p } } // Loop, parsing hex numbers followed by colon. j := 0 L: for j < IPv6len { // Hex number. n, i1, ok := xtoi(s, i) if !ok || n > 0xFFFF { return nil } // If followed by dot, might be in trailing IPv4. if i1 < len(s) && s[i1] == '.' { if ellipsis < 0 && j != IPv6len-IPv4len { // Not the right place. return nil } if j+IPv4len > IPv6len { // Not enough room. return nil } p4 := parseIPv4(s[i:]) if p4 == nil { return nil } p[j] = p4[12] p[j+1] = p4[13] p[j+2] = p4[14] p[j+3] = p4[15] i = len(s) j += 4 break } // Save this 16-bit chunk. p[j] = byte(n >> 8) p[j+1] = byte(n) j += 2 // Stop at end of string. i = i1 if i == len(s) { break } // Otherwise must be followed by colon and more. if s[i] != ':' && i+1 == len(s) { return nil } i++ // Look for ellipsis. if s[i] == ':' { if ellipsis >= 0 { // already have one return nil } ellipsis = j if i++; i == len(s) { // can be at end break } } } // Must have used entire string. if i != len(s) { return nil } // If didn't parse enough, expand ellipsis. if j < IPv6len { if ellipsis < 0 { return nil } n := IPv6len - j for k := j - 1; k >= ellipsis; k-- { p[k+n] = p[k] } for k := ellipsis + n - 1; k >= ellipsis; k-- { p[k] = 0 } } return p } // ParseIP parses s as an IP address, returning the result. // The string s can be in dotted decimal ("74.125.19.99") // or IPv6 ("2001:4860:0:2001::68") form. // If s is not a valid textual representation of an IP address, // ParseIP returns nil. func ParseIP(s string) IP { p := parseIPv4(s) if p != nil { return p } return parseIPv6(s) }