// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "fmt" "go/ast" "go/printer" "go/token" "os" "strings" ) func creat(name string) *os.File { f, err := os.Open(name, os.O_WRONLY|os.O_CREAT|os.O_TRUNC, 0666) if err != nil { fatal("%s", err) } return f } // writeDefs creates output files to be compiled by 6g, 6c, and gcc. // (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.) func (p *Prog) writeDefs() { pkgroot := os.Getenv("GOROOT") + "/pkg/" + os.Getenv("GOOS") + "_" + os.Getenv("GOARCH") path := p.PackagePath if !strings.HasPrefix(path, "/") { path = pkgroot + "/" + path } fgo2 := creat("_cgo_gotypes.go") fc := creat("_cgo_defun.c") // Write second Go output: definitions of _C_xxx. // In a separate file so that the import of "unsafe" does not // pollute the original file. fmt.Fprintf(fgo2, "// Created by cgo - DO NOT EDIT\n") fmt.Fprintf(fgo2, "package %s\n\n", p.Package) fmt.Fprintf(fgo2, "import \"unsafe\"\n\n") fmt.Fprintf(fgo2, "type _ unsafe.Pointer\n\n") for name, def := range p.Typedef { fmt.Fprintf(fgo2, "type %s ", name) printer.Fprint(fgo2, def) fmt.Fprintf(fgo2, "\n") } fmt.Fprintf(fgo2, "type _C_void [0]byte\n") fmt.Fprintf(fc, cProlog, pkgroot, pkgroot, pkgroot, pkgroot, pkgroot) for name, def := range p.Vardef { fmt.Fprintf(fc, "#pragma dynimport ·_C_%s %s \"%s.so\"\n", name, name, path) fmt.Fprintf(fgo2, "var _C_%s ", name) printer.Fprint(fgo2, &ast.StarExpr{X: def.Go}) fmt.Fprintf(fgo2, "\n") } fmt.Fprintf(fc, "\n") for name, value := range p.Constdef { fmt.Fprintf(fgo2, "const %s = %s\n", name, value) } for name, value := range p.Enumdef { fmt.Fprintf(fgo2, "const %s = %d\n", name, value) } fmt.Fprintf(fgo2, "\n") for name, def := range p.Funcdef { // Go func declaration. d := &ast.FuncDecl{ Name: ast.NewIdent("_C_" + name), Type: def.Go, } printer.Fprint(fgo2, d) fmt.Fprintf(fgo2, "\n") if name == "CString" || name == "GoString" { // The builtins are already defined in the C prolog. continue } // Construct a gcc struct matching the 6c argument frame. // Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. // These assumptions are checked by the gccProlog. // Also assumes that 6c convention is to word-align the // input and output parameters. structType := "struct {\n" off := int64(0) npad := 0 for i, t := range def.Params { if off%t.Align != 0 { pad := t.Align - off%t.Align structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } structType += fmt.Sprintf("\t\t%s p%d;\n", t.C, i) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } if t := def.Result; t != nil { if off%t.Align != 0 { pad := t.Align - off%t.Align structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } structType += fmt.Sprintf("\t\t%s r;\n", t.C) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } if len(def.Params) == 0 && def.Result == nil { structType += "\t\tchar unused;\n" // avoid empty struct off++ } structType += "\t}" argSize := off // C wrapper calls into gcc, passing a pointer to the argument frame. // Also emit #pragma to get a pointer to the gcc wrapper. fmt.Fprintf(fc, "#pragma dynimport _cgo_%s _cgo_%s \"%s.so\"\n", name, name, path) fmt.Fprintf(fc, "void (*_cgo_%s)(void*);\n", name) fmt.Fprintf(fc, "\n") fmt.Fprintf(fc, "void\n") fmt.Fprintf(fc, "·_C_%s(struct{uint8 x[%d];}p)\n", name, argSize) fmt.Fprintf(fc, "{\n") fmt.Fprintf(fc, "\tcgocall(_cgo_%s, &p);\n", name) fmt.Fprintf(fc, "}\n") fmt.Fprintf(fc, "\n") } p.writeExports(fgo2, fc) fgo2.Close() fc.Close() } // writeOutput creates stubs for a specific source file to be compiled by 6g // (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.) func (p *Prog) writeOutput(srcfile string) { base := srcfile if strings.HasSuffix(base, ".go") { base = base[0 : len(base)-3] } fgo1 := creat(base + ".cgo1.go") fgcc := creat(base + ".cgo2.c") // Write Go output: Go input with rewrites of C.xxx to _C_xxx. fmt.Fprintf(fgo1, "// Created by cgo - DO NOT EDIT\n") fmt.Fprintf(fgo1, "//line %s:1\n", srcfile) printer.Fprint(fgo1, p.AST) // While we process the vars and funcs, also write 6c and gcc output. // Gcc output starts with the preamble. fmt.Fprintf(fgcc, "%s\n", p.Preamble) fmt.Fprintf(fgcc, "%s\n", gccProlog) for name, def := range p.Funcdef { _, ok := p.OutDefs[name] if name == "CString" || name == "GoString" || ok { // The builtins are already defined in the C prolog, and we don't // want to duplicate function definitions we've already done. continue } p.OutDefs[name] = true // Construct a gcc struct matching the 6c argument frame. // Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. // These assumptions are checked by the gccProlog. // Also assumes that 6c convention is to word-align the // input and output parameters. structType := "struct {\n" off := int64(0) npad := 0 for i, t := range def.Params { if off%t.Align != 0 { pad := t.Align - off%t.Align structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } structType += fmt.Sprintf("\t\t%s p%d;\n", t.C, i) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } if t := def.Result; t != nil { if off%t.Align != 0 { pad := t.Align - off%t.Align structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } structType += fmt.Sprintf("\t\t%s r;\n", t.C) off += t.Size } if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } if len(def.Params) == 0 && def.Result == nil { structType += "\t\tchar unused;\n" // avoid empty struct off++ } structType += "\t}" // Gcc wrapper unpacks the C argument struct // and calls the actual C function. fmt.Fprintf(fgcc, "void\n") fmt.Fprintf(fgcc, "_cgo_%s(void *v)\n", name) fmt.Fprintf(fgcc, "{\n") fmt.Fprintf(fgcc, "\t%s *a = v;\n", structType) fmt.Fprintf(fgcc, "\t") if def.Result != nil { fmt.Fprintf(fgcc, "a->r = ") } fmt.Fprintf(fgcc, "%s(", name) for i := range def.Params { if i > 0 { fmt.Fprintf(fgcc, ", ") } fmt.Fprintf(fgcc, "a->p%d", i) } fmt.Fprintf(fgcc, ");\n") fmt.Fprintf(fgcc, "}\n") fmt.Fprintf(fgcc, "\n") } fgo1.Close() fgcc.Close() } // Write out the various stubs we need to support functions exported // from Go so that they are callable from C. func (p *Prog) writeExports(fgo2, fc *os.File) { if len(p.ExpFuncs) == 0 { return } fgcc := creat("_cgo_export.c") fgcch := creat("_cgo_export.h") fmt.Fprintf(fgcch, "/* Created by cgo - DO NOT EDIT. */\n") fmt.Fprintf(fgcch, "%s\n", gccExportHeaderProlog) fmt.Fprintf(fgcc, "/* Created by cgo - DO NOT EDIT. */\n") fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n") for _, exp := range p.ExpFuncs { fn := exp.Func // Construct a gcc struct matching the 6c argument and // result frame. structType := "struct {\n" off := int64(0) npad := 0 if fn.Recv != nil { t := p.cgoType(fn.Recv.List[0].Type) structType += fmt.Sprintf("\t\t%s recv;\n", t.C) off += t.Size } fntype := fn.Type forFieldList(fntype.Params, func(i int, atype ast.Expr) { t := p.cgoType(atype) if off%t.Align != 0 { pad := t.Align - off%t.Align structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } structType += fmt.Sprintf("\t\t%s p%d;\n", t.C, i) off += t.Size }) if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } forFieldList(fntype.Results, func(i int, atype ast.Expr) { t := p.cgoType(atype) if off%t.Align != 0 { pad := t.Align - off%t.Align structType += fmt.Sprintf("\t\tchar __pad%d[%d]\n", npad, pad) off += pad npad++ } structType += fmt.Sprintf("\t\t%s r%d;\n", t.C, i) off += t.Size }) if off%p.PtrSize != 0 { pad := p.PtrSize - off%p.PtrSize structType += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) off += pad npad++ } if structType == "struct {\n" { structType += "\t\tchar unused;\n" // avoid empty struct off++ } structType += "\t}" // Get the return type of the wrapper function // compiled by gcc. gccResult := "" if fntype.Results == nil || len(fntype.Results.List) == 0 { gccResult = "void" } else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { gccResult = p.cgoType(fntype.Results.List[0].Type).C } else { fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) forFieldList(fntype.Results, func(i int, atype ast.Expr) { fmt.Fprintf(fgcch, "\t%s r%d;\n", p.cgoType(atype).C, i) }) fmt.Fprintf(fgcch, "};\n") gccResult = "struct " + exp.ExpName + "_return" } // Build the wrapper function compiled by gcc. s := fmt.Sprintf("%s %s(", gccResult, exp.ExpName) if fn.Recv != nil { s += p.cgoType(fn.Recv.List[0].Type).C s += " recv" } forFieldList(fntype.Params, func(i int, atype ast.Expr) { if i > 0 || fn.Recv != nil { s += ", " } s += fmt.Sprintf("%s p%d", p.cgoType(atype).C, i) }) s += ")" fmt.Fprintf(fgcch, "\nextern %s;\n", s) fmt.Fprintf(fgcc, "extern _cgoexp_%s(void *, int);\n", exp.ExpName) fmt.Fprintf(fgcc, "\n%s\n", s) fmt.Fprintf(fgcc, "{\n") fmt.Fprintf(fgcc, "\t%s a;\n", structType) if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) { fmt.Fprintf(fgcc, "\t%s r;\n", gccResult) } if fn.Recv != nil { fmt.Fprintf(fgcc, "\ta.recv = recv;\n") } forFieldList(fntype.Params, func(i int, atype ast.Expr) { fmt.Fprintf(fgcc, "\ta.p%d = p%d;\n", i, i) }) fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp_%s, &a, (int) sizeof a);\n", exp.ExpName) if gccResult != "void" { if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { fmt.Fprintf(fgcc, "\treturn a.r0;\n") } else { forFieldList(fntype.Results, func(i int, atype ast.Expr) { fmt.Fprintf(fgcc, "\tr.r%d = a.r%d;\n", i, i) }) fmt.Fprintf(fgcc, "\treturn r;\n") } } fmt.Fprintf(fgcc, "}\n") // Build the wrapper function compiled by 6c/8c goname := exp.Func.Name.Name() if fn.Recv != nil { goname = "_cgoexpwrap_" + fn.Recv.List[0].Names[0].Name() + "_" + goname } fmt.Fprintf(fc, "#pragma dynexport _cgoexp_%s _cgoexp_%s\n", exp.ExpName, exp.ExpName) fmt.Fprintf(fc, "extern void ·%s();\n", goname) fmt.Fprintf(fc, "\nvoid\n") fmt.Fprintf(fc, "_cgoexp_%s(void *a, int32 n)\n", exp.ExpName) fmt.Fprintf(fc, "{\n") fmt.Fprintf(fc, "\tcgocallback(·%s, a, n);\n", goname) fmt.Fprintf(fc, "}\n") // Calling a function with a receiver from C requires // a Go wrapper function. if fn.Recv != nil { fmt.Fprintf(fgo2, "func %s(recv ", goname) printer.Fprint(fgo2, fn.Recv.List[0].Type) forFieldList(fntype.Params, func(i int, atype ast.Expr) { fmt.Fprintf(fgo2, ", p%d", i) printer.Fprint(fgo2, atype) }) fmt.Fprintf(fgo2, ")") if gccResult != "void" { fmt.Fprint(fgo2, " (") forFieldList(fntype.Results, func(i int, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } printer.Fprint(fgo2, atype) }) fmt.Fprint(fgo2, ")") } fmt.Fprint(fgo2, " {\n") fmt.Fprint(fgo2, "\t") if gccResult != "void" { fmt.Fprint(fgo2, "return ") } fmt.Fprintf(fgo2, "recv.%s(", exp.Func.Name) forFieldList(fntype.Params, func(i int, atype ast.Expr) { if i > 0 { fmt.Fprint(fgo2, ", ") } fmt.Fprintf(fgo2, "p%d", i) }) fmt.Fprint(fgo2, ")\n") fmt.Fprint(fgo2, "}\n") } } } // Call a function for each entry in an ast.FieldList, passing the // index into the list and the type. func forFieldList(fl *ast.FieldList, fn func(int, ast.Expr)) { if fl == nil { return } i := 0 for _, r := range fl.List { if r.Names == nil { fn(i, r.Type) i++ } else { for _ = range r.Names { fn(i, r.Type) i++ } } } } // Map predeclared Go types to Type. var goTypes = map[string]*Type{ "int": &Type{Size: 4, Align: 4, C: "int"}, "uint": &Type{Size: 4, Align: 4, C: "uint"}, "int8": &Type{Size: 1, Align: 1, C: "schar"}, "uint8": &Type{Size: 1, Align: 1, C: "uchar"}, "int16": &Type{Size: 2, Align: 2, C: "short"}, "uint16": &Type{Size: 2, Align: 2, C: "ushort"}, "int32": &Type{Size: 4, Align: 4, C: "int"}, "uint32": &Type{Size: 4, Align: 4, C: "uint"}, "int64": &Type{Size: 8, Align: 8, C: "int64"}, "uint64": &Type{Size: 8, Align: 8, C: "uint64"}, "float": &Type{Size: 4, Align: 4, C: "float"}, "float32": &Type{Size: 4, Align: 4, C: "float"}, "float64": &Type{Size: 8, Align: 8, C: "double"}, "complex": &Type{Size: 8, Align: 8, C: "__complex float"}, "complex64": &Type{Size: 8, Align: 8, C: "__complex float"}, "complex128": &Type{Size: 16, Align: 16, C: "__complex double"}, } // Map an ast type to a Type. func (p *Prog) cgoType(e ast.Expr) *Type { switch t := e.(type) { case *ast.StarExpr: x := p.cgoType(t.X) return &Type{Size: p.PtrSize, Align: p.PtrSize, C: x.C + "*"} case *ast.ArrayType: if t.Len == nil { return &Type{Size: p.PtrSize + 8, Align: p.PtrSize, C: "GoSlice"} } case *ast.StructType: // TODO case *ast.FuncType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "void*"} case *ast.InterfaceType: return &Type{Size: 3 * p.PtrSize, Align: p.PtrSize, C: "GoInterface"} case *ast.MapType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "GoMap"} case *ast.ChanType: return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "GoChan"} case *ast.Ident: // Look up the type in the top level declarations. // TODO: Handle types defined within a function. for _, d := range p.AST.Decls { gd, ok := d.(*ast.GenDecl) if !ok || gd.Tok != token.TYPE { continue } for _, spec := range gd.Specs { ts, ok := spec.(*ast.TypeSpec) if !ok { continue } if ts.Name.Name() == t.Name() { return p.cgoType(ts.Type) } } } for name, def := range p.Typedef { if name == t.Name() { return p.cgoType(def) } } if t.Name() == "uintptr" { return &Type{Size: p.PtrSize, Align: p.PtrSize, C: "uintptr"} } if t.Name() == "string" { return &Type{Size: p.PtrSize + 4, Align: p.PtrSize, C: "GoString"} } if r, ok := goTypes[t.Name()]; ok { if r.Align > p.PtrSize { r.Align = p.PtrSize } return r } } error(e.Pos(), "unrecognized Go type %v", e) return &Type{Size: 4, Align: 4, C: "int"} } const gccProlog = ` // Usual nonsense: if x and y are not equal, the type will be invalid // (have a negative array count) and an inscrutable error will come // out of the compiler and hopefully mention "name". #define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2+1]; // Check at compile time that the sizes we use match our expectations. #define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), n, _cgo_sizeof_##t##_is_not_##n) __cgo_size_assert(char, 1) __cgo_size_assert(short, 2) __cgo_size_assert(int, 4) typedef long long __cgo_long_long; __cgo_size_assert(__cgo_long_long, 8) __cgo_size_assert(float, 4) __cgo_size_assert(double, 8) ` const builtinProlog = ` typedef struct { char *p; int n; } _GoString_; _GoString_ GoString(char *p); char *CString(_GoString_); ` const cProlog = ` #include "runtime.h" #include "cgocall.h" #pragma dynimport initcgo initcgo "%s/libcgo.so" #pragma dynimport libcgo_thread_start libcgo_thread_start "%s/libcgo.so" #pragma dynimport libcgo_set_scheduler libcgo_set_scheduler "%s/libcgo.so" #pragma dynimport _cgo_malloc _cgo_malloc "%s/libcgo.so" #pragma dynimport _cgo_free _cgo_free "%s/libcgo.so" void ·_C_GoString(int8 *p, String s) { s = gostring((byte*)p); FLUSH(&s); } void ·_C_CString(String s, int8 *p) { p = cmalloc(s.len+1); mcpy((byte*)p, s.str, s.len); p[s.len] = 0; FLUSH(&p); } ` const gccExportHeaderProlog = ` typedef unsigned int uint; typedef signed char schar; typedef unsigned char uchar; typedef unsigned short ushort; typedef long long int64; typedef unsigned long long uint64; typedef struct { char *p; int n; } GoString; typedef void *GoMap; typedef void *GoChan; typedef struct { void *t; void *v; } GoInterface; `