// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "unsafe" ) type sliceStruct struct { array unsafe.Pointer len int cap int } // TODO: take uintptrs instead of int64s? func makeslice(t *slicetype, len64 int64, cap64 int64) sliceStruct { // NOTE: The len > MaxMem/elemsize check here is not strictly necessary, // but it produces a 'len out of range' error instead of a 'cap out of range' error // when someone does make([]T, bignumber). 'cap out of range' is true too, // but since the cap is only being supplied implicitly, saying len is clearer. // See issue 4085. len := int(len64) if len64 < 0 || int64(len) != len64 || t.elem.size > 0 && uintptr(len) > _MaxMem/uintptr(t.elem.size) { panic(errorString("makeslice: len out of range")) } cap := int(cap64) if cap < len || int64(cap) != cap64 || t.elem.size > 0 && uintptr(cap) > _MaxMem/uintptr(t.elem.size) { panic(errorString("makeslice: cap out of range")) } p := newarray(t.elem, uintptr(cap)) return sliceStruct{p, len, cap} } // TODO: take uintptr instead of int64? func growslice(t *slicetype, old sliceStruct, n int64) sliceStruct { if n < 1 { panic(errorString("growslice: invalid n")) } cap64 := int64(old.cap) + n cap := int(cap64) if int64(cap) != cap64 || cap < old.cap || t.elem.size > 0 && uintptr(cap) > _MaxMem/uintptr(t.elem.size) { panic(errorString("growslice: cap out of range")) } if raceenabled { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadrangepc(old.array, uintptr(old.len*int(t.elem.size)), callerpc, funcPC(growslice)) } et := t.elem if et.size == 0 { return sliceStruct{old.array, old.len, cap} } newcap := old.cap if newcap+newcap < cap { newcap = cap } else { for { if old.len < 1024 { newcap += newcap } else { newcap += newcap / 4 } if newcap >= cap { break } } } if uintptr(newcap) >= _MaxMem/uintptr(et.size) { panic(errorString("growslice: cap out of range")) } lenmem := uintptr(old.len) * uintptr(et.size) capmem := roundupsize(uintptr(newcap) * uintptr(et.size)) newcap = int(capmem / uintptr(et.size)) var p unsafe.Pointer if et.kind&kindNoPointers != 0 { p = rawmem(capmem) memmove(p, old.array, lenmem) memclr(add(p, lenmem), capmem-lenmem) } else { // Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan unitialized memory. // TODO(rsc): Use memmove when !needwb(). p = newarray(et, uintptr(newcap)) for i := 0; i < old.len; i++ { writebarrierfat(et, add(p, uintptr(i)*et.size), add(old.array, uintptr(i)*et.size)) } } return sliceStruct{p, old.len, newcap} } func slicecopy(to sliceStruct, fm sliceStruct, width uintptr) int { if fm.len == 0 || to.len == 0 { return 0 } n := fm.len if to.len < n { n = to.len } if width == 0 { return n } if raceenabled { callerpc := getcallerpc(unsafe.Pointer(&to)) pc := funcPC(slicecopy) racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc) racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc) } size := uintptr(n) * width if size == 1 { // common case worth about 2x to do here // TODO: is this still worth it with new memmove impl? *(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer } else { memmove(to.array, fm.array, size) } return int(n) } func slicestringcopy(to []byte, fm string) int { if len(fm) == 0 || len(to) == 0 { return 0 } n := len(fm) if len(to) < n { n = len(to) } if raceenabled { callerpc := getcallerpc(unsafe.Pointer(&to)) pc := funcPC(slicestringcopy) racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc) } memmove(unsafe.Pointer(&to[0]), unsafe.Pointer((*stringStruct)(unsafe.Pointer(&fm)).str), uintptr(n)) return n }