// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #undef EXTERN #define EXTERN #include #include #include "gg.h" #include "opt.h" void defframe(Prog *ptxt) { // fill in argument size ptxt->to.offset2 = rnd(curfn->type->argwid, widthptr); // fill in final stack size if(stksize > maxstksize) maxstksize = stksize; ptxt->to.offset = rnd(maxstksize+maxarg, widthptr); maxstksize = 0; } // Sweep the prog list to mark any used nodes. void markautoused(Prog* p) { for (; p; p = p->link) { if (p->from.type == D_AUTO && p->from.node) p->from.node->used = 1; if (p->to.type == D_AUTO && p->to.node) p->to.node->used = 1; } } // Fixup instructions after compactframe has moved all autos around. void fixautoused(Prog* p) { for (; p; p = p->link) { if (p->from.type == D_AUTO && p->from.node) p->from.offset += p->from.node->stkdelta; if (p->to.type == D_AUTO && p->to.node) p->to.offset += p->to.node->stkdelta; } } void clearfat(Node *nl) { uint32 w, c, q; Node n1; /* clear a fat object */ if(debug['g']) dump("\nclearfat", nl); w = nl->type->width; if(w == 8 || w == 12) if(componentgen(N, nl)) return; c = w % 4; // bytes q = w / 4; // quads gconreg(AMOVL, 0, D_AX); nodreg(&n1, types[tptr], D_DI); agen(nl, &n1); if(q >= 4) { gconreg(AMOVL, q, D_CX); gins(AREP, N, N); // repeat gins(ASTOSL, N, N); // STOL AL,*(DI)+ } else while(q > 0) { gins(ASTOSL, N, N); // STOL AL,*(DI)+ q--; } if(c >= 4) { gconreg(AMOVL, c, D_CX); gins(AREP, N, N); // repeat gins(ASTOSB, N, N); // STOB AL,*(DI)+ } else while(c > 0) { gins(ASTOSB, N, N); // STOB AL,*(DI)+ c--; } } /* * generate: * call f * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack */ void ginscall(Node *f, int proc) { Prog *p; Node reg, con; switch(proc) { default: fatal("ginscall: bad proc %d", proc); break; case 0: // normal call case -1: // normal call but no return p = gins(ACALL, N, f); afunclit(&p->to); if(proc == -1 || noreturn(p)) gins(AUNDEF, N, N); break; case 1: // call in new proc (go) case 2: // deferred call (defer) nodreg(®, types[TINT32], D_CX); gins(APUSHL, f, N); nodconst(&con, types[TINT32], argsize(f->type)); gins(APUSHL, &con, N); if(proc == 1) ginscall(newproc, 0); else ginscall(deferproc, 0); gins(APOPL, N, ®); gins(APOPL, N, ®); if(proc == 2) { nodreg(®, types[TINT64], D_AX); gins(ATESTL, ®, ®); patch(gbranch(AJNE, T, -1), retpc); } break; } } /* * n is call to interface method. * generate res = n. */ void cgen_callinter(Node *n, Node *res, int proc) { Node *i, *f; Node tmpi, nodi, nodo, nodr, nodsp; i = n->left; if(i->op != ODOTINTER) fatal("cgen_callinter: not ODOTINTER %O", i->op); f = i->right; // field if(f->op != ONAME) fatal("cgen_callinter: not ONAME %O", f->op); i = i->left; // interface if(!i->addable) { tempname(&tmpi, i->type); cgen(i, &tmpi); i = &tmpi; } genlist(n->list); // assign the args // i is now addable, prepare an indirected // register to hold its address. igen(i, &nodi, res); // REG = &inter nodindreg(&nodsp, types[tptr], D_SP); nodi.type = types[tptr]; nodi.xoffset += widthptr; cgen(&nodi, &nodsp); // 0(SP) = 4(REG) -- i.data regalloc(&nodo, types[tptr], res); nodi.type = types[tptr]; nodi.xoffset -= widthptr; cgen(&nodi, &nodo); // REG = 0(REG) -- i.tab regfree(&nodi); regalloc(&nodr, types[tptr], &nodo); if(n->left->xoffset == BADWIDTH) fatal("cgen_callinter: badwidth"); nodo.op = OINDREG; nodo.xoffset = n->left->xoffset + 3*widthptr + 8; cgen(&nodo, &nodr); // REG = 20+offset(REG) -- i.tab->fun[f] // BOTCH nodr.type = fntype; nodr.type = n->left->type; ginscall(&nodr, proc); regfree(&nodr); regfree(&nodo); setmaxarg(n->left->type); } /* * generate function call; * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack */ void cgen_call(Node *n, int proc) { Type *t; Node nod, afun; if(n == N) return; if(n->left->ullman >= UINF) { // if name involves a fn call // precompute the address of the fn tempname(&afun, types[tptr]); cgen(n->left, &afun); } genlist(n->list); // assign the args t = n->left->type; setmaxarg(t); // call tempname pointer if(n->left->ullman >= UINF) { regalloc(&nod, types[tptr], N); cgen_as(&nod, &afun); nod.type = t; ginscall(&nod, proc); regfree(&nod); return; } // call pointer if(n->left->op != ONAME || n->left->class != PFUNC) { regalloc(&nod, types[tptr], N); cgen_as(&nod, n->left); nod.type = t; ginscall(&nod, proc); regfree(&nod); return; } // call direct n->left->method = 1; ginscall(n->left, proc); } /* * call to n has already been generated. * generate: * res = return value from call. */ void cgen_callret(Node *n, Node *res) { Node nod; Type *fp, *t; Iter flist; t = n->left->type; if(t->etype == TPTR32 || t->etype == TPTR64) t = t->type; fp = structfirst(&flist, getoutarg(t)); if(fp == T) fatal("cgen_callret: nil"); memset(&nod, 0, sizeof(nod)); nod.op = OINDREG; nod.val.u.reg = D_SP; nod.addable = 1; nod.xoffset = fp->width; nod.type = fp->type; cgen_as(res, &nod); } /* * call to n has already been generated. * generate: * res = &return value from call. */ void cgen_aret(Node *n, Node *res) { Node nod1, nod2; Type *fp, *t; Iter flist; t = n->left->type; if(isptr[t->etype]) t = t->type; fp = structfirst(&flist, getoutarg(t)); if(fp == T) fatal("cgen_aret: nil"); memset(&nod1, 0, sizeof(nod1)); nod1.op = OINDREG; nod1.val.u.reg = D_SP; nod1.addable = 1; nod1.xoffset = fp->width; nod1.type = fp->type; if(res->op != OREGISTER) { regalloc(&nod2, types[tptr], res); gins(ALEAL, &nod1, &nod2); gins(AMOVL, &nod2, res); regfree(&nod2); } else gins(ALEAL, &nod1, res); } /* * generate return. * n->left is assignments to return values. */ void cgen_ret(Node *n) { genlist(n->list); // copy out args if(retpc) gjmp(retpc); else gins(ARET, N, N); } /* * generate += *= etc. */ void cgen_asop(Node *n) { Node n1, n2, n3, n4; Node *nl, *nr; Prog *p1; Addr addr; int a; nl = n->left; nr = n->right; if(nr->ullman >= UINF && nl->ullman >= UINF) { tempname(&n1, nr->type); cgen(nr, &n1); n2 = *n; n2.right = &n1; cgen_asop(&n2); goto ret; } if(!isint[nl->type->etype]) goto hard; if(!isint[nr->type->etype]) goto hard; if(is64(nl->type) || is64(nr->type)) goto hard; switch(n->etype) { case OADD: if(smallintconst(nr)) if(mpgetfix(nr->val.u.xval) == 1) { a = optoas(OINC, nl->type); if(nl->addable) { gins(a, N, nl); goto ret; } if(sudoaddable(a, nl, &addr)) { p1 = gins(a, N, N); p1->to = addr; sudoclean(); goto ret; } } break; case OSUB: if(smallintconst(nr)) if(mpgetfix(nr->val.u.xval) == 1) { a = optoas(ODEC, nl->type); if(nl->addable) { gins(a, N, nl); goto ret; } if(sudoaddable(a, nl, &addr)) { p1 = gins(a, N, N); p1->to = addr; sudoclean(); goto ret; } } break; } switch(n->etype) { case OADD: case OSUB: case OXOR: case OAND: case OOR: a = optoas(n->etype, nl->type); if(nl->addable) { if(smallintconst(nr)) { gins(a, nr, nl); goto ret; } regalloc(&n2, nr->type, N); cgen(nr, &n2); gins(a, &n2, nl); regfree(&n2); goto ret; } if(nr->ullman < UINF) if(sudoaddable(a, nl, &addr)) { if(smallintconst(nr)) { p1 = gins(a, nr, N); p1->to = addr; sudoclean(); goto ret; } regalloc(&n2, nr->type, N); cgen(nr, &n2); p1 = gins(a, &n2, N); p1->to = addr; regfree(&n2); sudoclean(); goto ret; } } hard: n2.op = 0; n1.op = 0; if(nr->ullman >= nl->ullman || nl->addable) { mgen(nr, &n2, N); nr = &n2; } else { tempname(&n2, nr->type); cgen(nr, &n2); nr = &n2; } if(!nl->addable) { igen(nl, &n1, N); nl = &n1; } n3 = *n; n3.left = nl; n3.right = nr; n3.op = n->etype; mgen(&n3, &n4, N); gmove(&n4, nl); if(n1.op) regfree(&n1); mfree(&n2); mfree(&n4); ret: ; } int samereg(Node *a, Node *b) { if(a->op != OREGISTER) return 0; if(b->op != OREGISTER) return 0; if(a->val.u.reg != b->val.u.reg) return 0; return 1; } /* * generate division. * caller must set: * ax = allocated AX register * dx = allocated DX register * generates one of: * res = nl / nr * res = nl % nr * according to op. */ void dodiv(int op, Node *nl, Node *nr, Node *res, Node *ax, Node *dx) { int check; Node n1, t1, t2, t3, t4, n4, nz; Type *t, *t0; Prog *p1, *p2, *p3; // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will trap. // Also the byte divide instruction needs AH, // which we otherwise don't have to deal with. // Easiest way to avoid for int8, int16: use int32. // For int32 and int64, use explicit test. // Could use int64 hw for int32. t = nl->type; t0 = t; check = 0; if(issigned[t->etype]) { check = 1; if(isconst(nl, CTINT) && mpgetfix(nl->val.u.xval) != -1LL<<(t->width*8-1)) check = 0; else if(isconst(nr, CTINT) && mpgetfix(nr->val.u.xval) != -1) check = 0; } if(t->width < 4) { if(issigned[t->etype]) t = types[TINT32]; else t = types[TUINT32]; check = 0; } tempname(&t1, t); tempname(&t2, t); if(t0 != t) { tempname(&t3, t0); tempname(&t4, t0); cgen(nl, &t3); cgen(nr, &t4); // Convert. gmove(&t3, &t1); gmove(&t4, &t2); } else { cgen(nl, &t1); cgen(nr, &t2); } if(!samereg(ax, res) && !samereg(dx, res)) regalloc(&n1, t, res); else regalloc(&n1, t, N); gmove(&t2, &n1); gmove(&t1, ax); p3 = P; if(check) { nodconst(&n4, t, -1); gins(optoas(OCMP, t), &n1, &n4); p1 = gbranch(optoas(ONE, t), T, +1); nodconst(&n4, t, -1LL<<(t->width*8-1)); gins(optoas(OCMP, t), ax, &n4); p2 = gbranch(optoas(ONE, t), T, +1); if(op == ODIV) gmove(&n4, res); if(op == OMOD) { nodconst(&n4, t, 0); gmove(&n4, res); } p3 = gbranch(AJMP, T, 0); patch(p1, pc); patch(p2, pc); } if(!issigned[t->etype]) { nodconst(&nz, t, 0); gmove(&nz, dx); } else gins(optoas(OEXTEND, t), N, N); gins(optoas(op, t), &n1, N); regfree(&n1); if(op == ODIV) gmove(ax, res); else gmove(dx, res); if(check) patch(p3, pc); } static void savex(int dr, Node *x, Node *oldx, Node *res, Type *t) { int r; r = reg[dr]; nodreg(x, types[TINT32], dr); // save current ax and dx if they are live // and not the destination memset(oldx, 0, sizeof *oldx); if(r > 0 && !samereg(x, res)) { tempname(oldx, types[TINT32]); gmove(x, oldx); } regalloc(x, t, x); } static void restx(Node *x, Node *oldx) { regfree(x); if(oldx->op != 0) { x->type = types[TINT32]; gmove(oldx, x); } } /* * generate division according to op, one of: * res = nl / nr * res = nl % nr */ void cgen_div(int op, Node *nl, Node *nr, Node *res) { Node ax, dx, oldax, olddx; Type *t; if(is64(nl->type)) fatal("cgen_div %T", nl->type); if(issigned[nl->type->etype]) t = types[TINT32]; else t = types[TUINT32]; savex(D_AX, &ax, &oldax, res, t); savex(D_DX, &dx, &olddx, res, t); dodiv(op, nl, nr, res, &ax, &dx); restx(&dx, &olddx); restx(&ax, &oldax); } /* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ void cgen_shift(int op, int bounded, Node *nl, Node *nr, Node *res) { Node n1, n2, nt, cx, oldcx, hi, lo; int a, w; Prog *p1, *p2; uvlong sc; if(nl->type->width > 4) fatal("cgen_shift %T", nl->type); w = nl->type->width * 8; a = optoas(op, nl->type); if(nr->op == OLITERAL) { tempname(&n2, nl->type); cgen(nl, &n2); regalloc(&n1, nl->type, res); gmove(&n2, &n1); sc = mpgetfix(nr->val.u.xval); if(sc >= nl->type->width*8) { // large shift gets 2 shifts by width-1 gins(a, ncon(w-1), &n1); gins(a, ncon(w-1), &n1); } else gins(a, nr, &n1); gmove(&n1, res); regfree(&n1); return; } memset(&oldcx, 0, sizeof oldcx); nodreg(&cx, types[TUINT32], D_CX); if(reg[D_CX] > 1 && !samereg(&cx, res)) { tempname(&oldcx, types[TUINT32]); gmove(&cx, &oldcx); } if(nr->type->width > 4) { tempname(&nt, nr->type); n1 = nt; } else { nodreg(&n1, types[TUINT32], D_CX); regalloc(&n1, nr->type, &n1); // to hold the shift type in CX } if(samereg(&cx, res)) regalloc(&n2, nl->type, N); else regalloc(&n2, nl->type, res); if(nl->ullman >= nr->ullman) { cgen(nl, &n2); cgen(nr, &n1); } else { cgen(nr, &n1); cgen(nl, &n2); } // test and fix up large shifts if(bounded) { if(nr->type->width > 4) { // delayed reg alloc nodreg(&n1, types[TUINT32], D_CX); regalloc(&n1, types[TUINT32], &n1); // to hold the shift type in CX split64(&nt, &lo, &hi); gmove(&lo, &n1); } } else { if(nr->type->width > 4) { // delayed reg alloc nodreg(&n1, types[TUINT32], D_CX); regalloc(&n1, types[TUINT32], &n1); // to hold the shift type in CX split64(&nt, &lo, &hi); gmove(&lo, &n1); gins(optoas(OCMP, types[TUINT32]), &hi, ncon(0)); p2 = gbranch(optoas(ONE, types[TUINT32]), T, +1); gins(optoas(OCMP, types[TUINT32]), &n1, ncon(w)); p1 = gbranch(optoas(OLT, types[TUINT32]), T, +1); patch(p2, pc); } else { gins(optoas(OCMP, nr->type), &n1, ncon(w)); p1 = gbranch(optoas(OLT, types[TUINT32]), T, +1); } if(op == ORSH && issigned[nl->type->etype]) { gins(a, ncon(w-1), &n2); } else { gmove(ncon(0), &n2); } patch(p1, pc); } gins(a, &n1, &n2); if(oldcx.op != 0) gmove(&oldcx, &cx); gmove(&n2, res); regfree(&n1); regfree(&n2); } /* * generate byte multiply: * res = nl * nr * no byte multiply instruction so have to do * 16-bit multiply and take bottom half. */ void cgen_bmul(int op, Node *nl, Node *nr, Node *res) { Node n1b, n2b, n1w, n2w; Type *t; int a; if(nl->ullman >= nr->ullman) { regalloc(&n1b, nl->type, res); cgen(nl, &n1b); regalloc(&n2b, nr->type, N); cgen(nr, &n2b); } else { regalloc(&n2b, nr->type, N); cgen(nr, &n2b); regalloc(&n1b, nl->type, res); cgen(nl, &n1b); } // copy from byte to short registers t = types[TUINT16]; if(issigned[nl->type->etype]) t = types[TINT16]; regalloc(&n2w, t, &n2b); cgen(&n2b, &n2w); regalloc(&n1w, t, &n1b); cgen(&n1b, &n1w); a = optoas(op, t); gins(a, &n2w, &n1w); cgen(&n1w, &n1b); cgen(&n1b, res); regfree(&n1w); regfree(&n2w); regfree(&n1b); regfree(&n2b); }