
The
Go

Programming Language

Part 1

Rob Pike
r@google.com
October, 2009

Wednesday, October 21, 2009

mailto:r@google.com
mailto:r@google.com

The team

Russ Cox
Robert Griesemer
Ian Lance Taylor
Rob Pike
Ken Thompson

Plus lots of contributors...

contact:
nuts@golang.org: user discussion
dev@golang.org: developers

Wednesday, October 21, 2009

mailto:dev@golang.org
mailto:dev@golang.org

Course Outline

Day 1
Basics

Day 2
Types, methods, and interfaces

Day 3
Concurrency and communication

This course is about programming in Go, not
about programming language design. That
could be a separate talk.

Wednesday, October 21, 2009

Today’s Outline

Motivation

Basics
the easy, mostly familiar stuff

Packages and program construction

Wednesday, October 21, 2009

Motivation

Wednesday, October 21, 2009

Why, briefly?

In the current world, languages don't help enough:

 Computers fast but software construction slow

 Dependency analysis necessary for speed, safety

 Types get in the way too much

 Garbage collection, concurrency poorly supported

 Multi-core seen as crisis not opportunity

Wednesday, October 21, 2009

Go

New

Experimental

Concurrent

Garbage-collected

Systems

Language

Wednesday, October 21, 2009

In short
Our goal is to make programming fun again.

- the feel of a dynamic language with the safety of
a static type system

- compile to machine language so it runs fast

- real run-time that supports GC, concurrency

- lightweight, flexible type system

- has methods but not a conventional OO language

Wednesday, October 21, 2009

Resources

For more background, etc. see the documentation:

http://golang.org/

Includes:

- reference manual
- tutorial
- library documentation
- setup and how-to docs
- FAQs
- more

Wednesday, October 21, 2009

http://go/go
http://go/go

Status: Compilers
6g (ken)

experimental
generates OK code very quickly
not gcc-linkable

gccgo (iant)
more traditional
generates good code not as quickly
gcc-linkable

Both are for 64-bit x86 (amd64, x86-64); support
for 32-bit x86 exists; ARM underway.

Garbage collector, concurrency etc. implemented.
Rudimentary libraries improving fast.

Wednesday, October 21, 2009

Basics

Wednesday, October 21, 2009

Time for some code

package main

import "fmt"

func main() {
 fmt.Print("Hello, 世界\n")
}

Wednesday, October 21, 2009

Language basics

Assuming familiarity with other C-like languages,
here comes a quick tour of the basics.

This will be mostly easy, familiar and therefore dull.
Apologies for that.

The next two lectures contain the fun stuff but we
need to lay down the groundwork first.

Wednesday, October 21, 2009

Lexical structure

Mostly traditional with modern details.

Source is UTF-8. White space: blank, tab,
newline.

Identifiers are alphanumeric (plus ‘_’) with
“alpha” and “numeric” defined by Unicode.

Comments:

/* This is a comment; no nesting */
// So is this.

Wednesday, October 21, 2009

Literals
C-like but numbers require no signedness or size
markings (more about this soon)
23
0x0FF
1.234e7

C-like strings, but Unicode/UTF-8. Also \xNN
always 2 digits; \012 always 3; both are bytes.

"Hello, world\n"
"\xFF" // 1 byte
"\u00FF" // 1 unicode char, 2 bytes of UTF-8

Raw strings
`\n\.abc\t\` == "\\n\\.abc\\t\\"

Wednesday, October 21, 2009

Syntax overview
Basically C-like with reversed types and declarations,
plus keywords to introduce each type of declaration.

var a int
var b, c *int // note difference from C
var d []int
type S struct { a, b int }

Basic control structures are familiar:

if a == b { return true } else { return false }
for i = 0; i < 10; i++ { ... }

Note: no parentheses, but braces required.

More about all this later.
Wednesday, October 21, 2009

Semicolons
Semicolons separate (not terminate) statements but:
- semis never required at top (global) level
- semis not required after closing) of declaration list
- semis not required after } (unless part of expr)

Thus no semis needed in this program:
package main

const three = 3
var i int = three

func main() { fmt.Printf("%d\n", i) }

However, implicit empty statement allows you to use
semicolons the same way as in C if you want.

Wednesday, October 21, 2009

Numeric types
Numeric types are built in, will be familiar:

int uint float

int8 uint8 = byte

int16 uint16

int32 uint32 float32

int64 uint64 float64

Also uintptr, an integer big enough to store a pointer.
These are all distinct types; int is not int32 even on
a 32-bit machine.
No implicit conversions (but don't panic).

Wednesday, October 21, 2009

Bool

The usual boolean type, bool, with values true and
false (predefined constants).

The if statement etc. use boolean expressions.

Pointers and integers are not booleans.†

† Consider (not Go): const bool False = "false"

Wednesday, October 21, 2009

String
The built-in type string represents immutable arrays
of bytes - that is, text. Strings are length-delimited
not NUL-terminated.

String literals have type string.

Immutable, just like ints. Can reassign variables but
not edit values.

Just as 3 is always 3, "hello" is always "hello".

Language has good support for string manipulation.

Wednesday, October 21, 2009

Expressions
Mostly C-like operators.
Binary operators:

Prec. operators comments
6 * / % << >> & &^ &^ is "bit clear"

5 + - | ^ ^ is "xor"

4 == != < <= > >=

3 <- communication

2 &&

1 ||

Operators that are also unary: & ! * + - ^ <-
Unary ^ is complement.

Wednesday, October 21, 2009

Go vs. C expressions
Surprises for the C programmer:

fewer precedence levels (should be easy)
^ instead of ~ (it's binary "exclusive or" made unary)

++ and -- are not expression operators
(x++ is a statement, not an expression;
*p++ is (*p)++ not *(p++))

&^ is new; handy in constant expressions
<< >> etc. require an unsigned shift count

Non-surprises:
assignment ops work as expected: += <<= &^= etc.
expressions generally look the same (indexing,
 function call, etc.)

Wednesday, October 21, 2009

Examples

+x
23 + 3*x[i]
x <= f()
^a >> b
f() || g()
x == y + 1 && <-chan_ptr > 0
x &^ 7 // x with the low 3 bits cleared
fmt.Printf("%5.2g\n", 2*math.Sin(PI/8))

"hello" ", " "there" // lexical cat
"hello, " + str // dynamic cat

Wednesday, October 21, 2009

Numeric conversions

Converting a numeric value from one type to another
is a conversion, with syntax like a function call:

uint8(int_var) // truncate to size
int(float_var) // truncate fraction
float64(int_var) // convert to float

Also some conversions to string:

string(0x1234) // == "\u1234"
string(array_of_bytes) // bytes -> bytes
string(array_of_ints) // ints -> Unicode/UTF-8

Wednesday, October 21, 2009

Constants

Numeric constants are "ideal numbers": no size or
sign, hence no l or u or ul endings.

077 // octal
0xFEEDBEEEEEEEEEEEEEEEEEEEEF // hexadecimal
1 << 100

There are integer and floating-point ideal numbers;
syntax of literal determines type:

1.234e5
1e2 // floating-point
100 // integer

Wednesday, October 21, 2009

Constant Expressions
Floating point and integer constants can be
combined at will, with the type of the resulting
expression determined by the type of the constants.
The operations themselves also depend on the type.

2*3.14 // floating point: 6.28
3./2 // floating point: 1.5
3/2 // integer: 1

// high precision:
const Ln2= 0.693147180559945309417232121458\
 176568075500134360255254120680009
const Log2E= 1/Ln2 // accurate reciprocal

Representation is "big enough" (1024 bits now).

Wednesday, October 21, 2009

Consequences of ideal numbers
The language permits the use of constants
without explicit conversion if the value can be
represented (there's no conversion necessary; the
value is OK):

 var million int = 1e6 // float constant
 math.Sin(1)

Constants must be representable in their type.
Example: ^0 is -1 which is not in range 0-255.
 uint8(^0) // bad: -1 can't be represented
 ^uint8(0) // OK
 uint8(350) // bad: 350 can't be represented
 uint8(35.0) // OK: 35
 uint8(3.5) // bad: 3.5 can't be represented

Wednesday, October 21, 2009

Declarations
Declarations are introduced by a keyword (var,
const, type, func) and look reversed compared to C:

var i int
const PI = 22./7.
type Point struct { x, y int }
func sum(a, b int) int { return a + b }

Why are they reversed? Earlier example:

var p, q *int

Also functions read better and are consistent with
other declarations. And there's another reason,
coming up.

Wednesday, October 21, 2009

Var
Variable declarations are introduced by var.

They may have a type or an initialization expression;
one or both must be present. Initializers must
match variables (and types!).

var i int
var j = 365.245
var k int = 0
var l, m uint64 = 1, 2
var billion int64 = 1e9 // float constant!
var inter, floater, stringer = 1, 2.0, "hi"

Wednesday, October 21, 2009

Distributing var
Annoying to type var all the time. Group with
parens! Need semicolons as separators.

var (
i int;
j = 356.245;
k int = 0;
l, m uint64 = 1, 2;
billion int64 = 1e9;
inter, floater, stringer = 1, 2.0, "hi"

)

Applies to const, type, var

Wednesday, October 21, 2009

The := "short declaration"
Within functions (only), declarations of the form
var v = value

can be shortened to
v := value

(Another reason for the name/type reversal.)

The type is that of the value (for ideal numbers, get
int or float, accordingly.)
a, b, c, d := 1, 2.0, "three", FOUR

These are used a lot and are available in places such
as for loop initializers.

Wednesday, October 21, 2009

Const
Constant declarations are introduced by const.

They must have a "constant expression", evaluated
at compile time, as initializer and may have an
optional type specifier.

const Pi = 22./7.
const AccuratePi float64 = 355./113
const beef, two, parsnip = "meat", 2, "veg"

const (
Monday, Tuesday, Wednesday = 1, 2, 3;
Thursday, Friday, Saturday = 4, 5, 6;

)

Wednesday, October 21, 2009

Iota
Constant declarations can use the counter iota,
which starts at 0 in each const block and increments
at each semicolon.
const (
Monday = iota; // 0
Tuesday = iota; // 1

)

Shorthand: Previous type and expressions repeat.
const (
loc0, bit0 uint32 = iota, 1<<iota; // 0, 1
loc1, bit1; // 1, 2
loc2, bit2; // 2, 4

)

Wednesday, October 21, 2009

Type
Type declarations are introduced by type.

We'll learn more about types later but here are some
examples:

type Point struct {
x, y, z float;
name string

}
type Operator func(a, b int) int
type ArrayOfIntPointers []*int

We'll come back to functions a little later.

Wednesday, October 21, 2009

New

The new() operator allocates memory. Syntax
is like a function call, with type as argument,
similar to C++. Returns a pointer to the
allocated object.

var p *Point = new(Point)
v := new(int) // v has type *int

Later we'll see how to build arrays and such.

There is no delete or free; Go has garbage
collection.

Wednesday, October 21, 2009

Assignment

Assignment is easy and familiar:

a = b

But multiple assignment works too:

x, y, z = f1(), f2(), f3()
a, b = b, a

Functions can return multiple values (details
later):

nbytes, error := Write(buf)

Wednesday, October 21, 2009

Control structures

Similar to C, but different in significant ways.

Go has if, for and switch (plus one more to
appear later).

As stated before, no parentheses, but braces
mandatory.

They are quite regular when seen as a set.
For instance, if, for and switch all accept
initialization statements.

Wednesday, October 21, 2009

Forms of control structures

Details follow but in general:

if and switch come in 1- and 2-element
forms, described below.

for has 1- and 3-element forms:
single is C's while:
 for a {}

triple is C's for:
for a;b;c {}

In any of these forms, any element can be
empty.

Wednesday, October 21, 2009

If
Basic form is familiar, but no dangling else problem:
if x < 5 { less() }
if x < 5 { less() } else if x == 5 { equal() }

Initialization statement allowed; requires semicolon.
if v := f(); v < 10 {
fmt.Printf("%d less than 10\n", v)

} else {
 fmt.Printf("%d not less than 10", v)
}

Useful with multivariate functions:
if n, err = fd.Write(buf); err != nil { ... }

Missing condition means true, which is not too
useful in this context but handy in for, switch.

Wednesday, October 21, 2009

For
Basic form is familiar:
for i := 0; i < 10; i++ { ... }

Missing condition means true:
for ;; { fmt.Printf("looping forever") }

But you can leave out the semis too:

for { fmt.Printf("Mine! ") }

Don't forget multivariate assigments:

for i,j := 0,N; i < j; i,j = i+1,j-1 {...}

(There's no comma operator as in C.)
Wednesday, October 21, 2009

Switch details
Switches are superficially similar to C's.

But there are important differences:
- expressions need not be constants or even ints.
- no automatic fall through
- instead, lexically last statement can be fallthrough
- multiple cases can be comma-separated

switch count%7 {
 case 4,5,6: error();
 case 3: a *= v; fallthrough;
 case 2: a *= v; fallthrough;
 case 1: a *= v; fallthrough;
 case 0: return a*v;
}

Wednesday, October 21, 2009

Switch
Switch is more powerful than in C. Familiar form:
switch a {
 case 0: fmt.Printf("0")
 default: fmt.Printf("non-zero")
}

The expressions can be any type and a missing
switch expression means true. Result: if-else chain:
a, b := x[i], y[j];
switch {
case a < b: return -1
case a == b: return 0
case a > b: return 1

}
or
 switch a, b := x[i], y[j]; { ... }

Wednesday, October 21, 2009

Break, continue, etc.

The break and continue statements work as in C.

They may specify a label to affect an outer structure:

Loop: for i := 0; i < 10; i++ {
switch f(i) {
 case 0, 1, 2: break Loop
}
g(i)

}

Yes Ken, there is a goto.

Wednesday, October 21, 2009

Functions

Functions are introduced by the func keyword.
Return type, if any, comes after parameters. The
return does as you expect.

func square(f float) float { return f*f }

A function can return multiple values. If so, the
return types are a parenthesized list.

func MySqrt(f float) (float, bool) {
 if f >= 0 { return math.Sqrt(f), true }
 return 0, false
}

Wednesday, October 21, 2009

Functions with result variables
The result "parameters" are actual variables you
can use if you name them.

func MySqrt(f float) (v float, ok bool) {
 if f >= 0 { v,ok = math.Sqrt(f),true }
 else { v,ok = 0,false }
 return v,ok
}

The result variables are initialized to "zero" (0,
0.0, false etc. according to type; more in a sec).

func MySqrt(f float) (v float, ok bool) {
 if f >= 0 { v,ok = math.Sqrt(f),true }
 return v,ok
}

Wednesday, October 21, 2009

The empty return

Finally, a return with no expressions returns the
existing value of the result variables. Two more
versions of MySqrt:

func MySqrt(f float) (v float, ok bool) {
 if f >= 0 { v,ok = math.Sqrt(f),true }
 return // must be explicit
}

func MySqrt(f float) (v float, ok bool) {
 if f < 0 { return } // error case
 return math.Sqrt(f),true
}

Wednesday, October 21, 2009

What was that about zero?
All memory in Go is initialized. All variables are
initialized upon execution of their declaration.
Without an initializing expression, the "zero
value" of the type is used. The loop
for i := 0; i < 5; i++ {
 var v int;
 fmt.Printf("%d\n", v);
 v = 5
}

will print 0, 0, 0, 0, 0.

The zero value depends on the type: integer 0,
floating point 0.0, false, empty string, nil
pointer, zeroed struct, etc.

Wednesday, October 21, 2009

Defer

The defer statement executes a function (or method)
when the enclosing function returns. The arguments
are evaluated at the point of the defer; the function
call happens upon return.

func data(name string) string {
 f := os.Open(name, os.O_RDONLY, 0);
 defer f.Close();
 contents := io.ReadAll(f);
 return contents;
}

Useful for closing fds, unlocking mutexes, etc.

Wednesday, October 21, 2009

One function invocation per defer

Each defer that executes queues a function call to
execute, in LIFO order, so

func f() {
for i := 0; i < 5; i++ {
defer fmt.Printf("%d ", i)

}
}

prints 4 3 2 1 0. You can close all those FDs or
unlock those mutexes at the end.

Wednesday, October 21, 2009

Tracing with defer
func trace(s string) { Print("entering:", s); }
func untrace(s string) { Print("leaving:", s); }

func a() {
 trace("a");
 defer untrace("a");
 Print("in a")
}
func b() {
 trace("b");
 defer untrace("b");
 Print("in b");
 a()
}

func main() { b() }

But we can do it more neatly...
Wednesday, October 21, 2009

Args evaluate now, defer later
func trace(s string) string {
 Print("entering:", s);
 return s
}
func un(s string) {
 Print("leaving:", s)
}
func a() {
 defer un(trace("a"));
 Print("in a")
}
func b() {
 defer un(trace("b"));
 Print("in b");
 a()
}
func main() { b() }

Wednesday, October 21, 2009

Function literals

As in C, functions can't be declared inside functions -
but function literals can be assigned to variables.

func f() {
for i := 0; i < 10; i++ {
 g := func(i int) { fmt.Printf("%d",i) };
 g(i);
}

}

Wednesday, October 21, 2009

Function literals are closures

Function literals are indeed closures.

func adder() (func(int) int) {
 var x int;
 return func(delta int) int {
 x += delta;
 return x
 }
}
var f = adder();
fmt.Print(f(1));
fmt.Print(f(20));
fmt.Print(f(300));

Prints 1 21 321 - accumulating in f's x
Wednesday, October 21, 2009

Program construction

Wednesday, October 21, 2009

Packages

A program is constructed as a "package", which
may use facilities from other packages.

A Go program is created by linking together a set
of packages.

A package may be built from multiple source files.

Names in imported packages are accessed through
a "qualified identifier": packagename.Itemname.

Wednesday, October 21, 2009

Source file structure

Every source file contains:

- a package clause (which package it's in); that
name is the default name used by importers.
package fmt

- an optional set of import declarations
import "fmt" // use default name
import my_fmt "fmt" // use the name my_fmt

- zero or more global or "package-level"
declarations.

Wednesday, October 21, 2009

A single-file package

package main // this file is part of package "main"

import "fmt" // this file uses package "fmt"

const hello = "Hello, 世界\n"
func main() {
 fmt.Print(hello) // fmt is imported pkg name
}

Wednesday, October 21, 2009

main and main.main()

Each Go program contains one package called main
and its main function, after initialization, is where
execution starts, analogous with the global main()
in C, C++.

The main.main function takes no arguments and
returns no value. The program exits -
immediately and successfully - when main.main
returns.

Wednesday, October 21, 2009

Os

// A version of echo(1)
package main

import ("fmt"; "os")

func main() {
 if len(os.Args) < 2 { // length of array
 os.Exit(1)
 }
 for i := 1; i < len(os.Args); i++ {
 fmt.Printf("arg %d: %s\n", i, os.Args[i])
 }
} // falling off end == os.Exit(0)

Package os provides Exit() and access to file I/O,
command-line arguments, etc. (Flag package
appears shortly.)

Wednesday, October 21, 2009

Global and package scope
Within a package, all global variables, functions,
types, and constants are visible from all the
package's source files.

For clients (importers) of the package, names must
be upper case to be visible: global variables,
functions, types, constants, plus methods and
structure fields for global variables and types.

const hello = "you smell" // package visible
const Hello = "you smell nice" // globally visible
const _Bye = "stinko!" // _ is not upper

Very different from C/C++: no extern, static,
private, public.

Wednesday, October 21, 2009

Initialization
Two ways to initialize global variables before
execution of main.main:

1) A global declaration with an initializer
2) An init() function, as many as one per source file.

Package dependency guarantees correct execution
order.

Initialization is always single-threaded.

Wednesday, October 21, 2009

Initialization example
package transcendental
import "math"
var Pi float64
func init() {
 Pi = 4*math.Atan(1) // init() function computes Pi
}
====
package main
import (
 "fmt";
 "transcendental"

)
var twoPi = 2*transcendental.Pi // decl computes twoPi
func main() {
 fmt.Printf("2*Pi = %g\n", twoPi);

}
====
Output: 2*Pi = 6.283185307179586

Wednesday, October 21, 2009

Package and program construction

To build a program, the packages, and the files
within them, must be compiled in the correct order.

Package dependencies determine the order in which
to build packages.

Within a package, the source files must (conceptually
at least) all be compiled together. The package is
compiled as a unit, and conventionally each directory
contains one package. Ignoring tests,
 cd my_package
 6g *.go

Usually we use make.
Wednesday, October 21, 2009

Building the fmt package
% pwd
/Users/r/go/src/pkg/fmt
% ls
Makefile fmt_test.go format.go print.go
% make # hand-written but trivial
% ls
Makefile _go_.6 _obj fmt_test.go format.go print.go
% make clean; make
...

Objects go into the subdirectory _obj.

Makefiles are written using helpers called Make.pkg
etc.; see sources

Wednesday, October 21, 2009

Testing

To test a package, write a set of Go source files
within the same package; give the files names of the
form *_test.go.

Within those files, global functions with names
starting Test[^a-z]* will be run by the testing tool,
gotest. Those functions should have signature

 func TestXxxx(t *testing.T)

The "testing" package provides support for logging,
error reporting.

Wednesday, October 21, 2009

An example test
% grep "interesting_bits" fmt_test.go
package fmt // package is fmt, not main
import (
 "testing"
)
func TestFlagParser(t *testing.T) {
 var flagprinter flagPrinter;
 for i := 0; i < len(flagtests); i++ {
 tt := flagtests[i];
 s := Sprintf(tt.in, &flagprinter);
 if s != tt.out {

// method call coming up - easy to understand.
 t.Errorf("Sprintf(%q, &flagprinter) => %q,"
 " want %q", tt.in, s, tt.out)
 }
 }
}
%

Wednesday, October 21, 2009

Testing: gotest
% ls
Makefile fmt.a fmt_test.go format.go print.go
% gotest # by default, does all *_test.go
PASS
wally=% gotest fmt_test.go --chatty
=== RUN fmt.TestFlagParser
--- PASS: fmt.TestFlagParser
=== RUN fmt.TestArrayPrinter
--- PASS: fmt.TestArrayPrinter
=== RUN fmt.TestFmtInterface
--- PASS: fmt.TestFmtInterface
=== RUN fmt.TestStructPrinter
--- PASS: fmt.TestStructPrinter
=== RUN fmt.TestSprintf
--- PASS: fmt.TestSprintf
PASS
%

Wednesday, October 21, 2009

Libraries
Libraries are just packages.
The set of libraries is modest but growing.
Some examples:

Package Purpose Examples
fmt formatted I/O Printf, Sprintf
os OS interface Open, Read, Write

strconv numbers <-> strings Atoi, Atof, Itoa
io generic I/O Copy, Pipe

flag flags: --help etc. Bool, String
log event logging Log, Logf, Stderr

regexp regular expressions Compile, Match
template HTML, etc. Parse, Execute
bytes byte arrays Compare, Buffer

Wednesday, October 21, 2009

A little more about fmt
The fmt package contains familiar names in initial caps:
Printf - print to standard output
Sprintf - returns a string
Fprintf - operates on os.Stderr etc. (tomorrow)

but also
Print, Sprint, Fprint - no format
Println, Sprintln, Fprintln - no format, adds
 spaces, final \n
fmt.Printf("%d %d %g\n", 1, 2, 3.5)
fmt.Print(1, " ", 2, " ", 3.5, "\n")
fmt.Println(1, 2, 3.5)

Each produces the same result: "1 2 3.5\n"

Wednesday, October 21, 2009

Library documentation
Source code contains comments.
Command line or web tool pulls them out.
Link:
 http://golang.org/pkg/

Command:

 % godoc fmt
 % godoc fmt Printf

Wednesday, October 21, 2009

http://golang.org/pkg/
http://golang.org/pkg/

Exercise

Wednesday, October 21, 2009

Exercise: Day 1

Look at http://go/go and set up a client.

You all know what the Fibonacci series is.
Write a package to implement it. There
should be a function to get the next value.
(You don't have structs yet, so use some
globals to store state.) But instead of
addition, make the operation settable by a
function provided by the user. Integers?
Floats? Strings? Up to you.

Write a gotestable test for your package.

Wednesday, October 21, 2009

Next lesson

Composite types

Methods

Interfaces

Wednesday, October 21, 2009

The
Go

Programming Language

Part 1

Rob Pike
r@google.com
October 2009

Wednesday, October 21, 2009

mailto:r@google.com
mailto:r@google.com

