// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package diff implements the Myers diff algorithm. package diff import "strings" // Sources: // https://blog.jcoglan.com/2017/02/15/the-myers-diff-algorithm-part-3/ // https://www.codeproject.com/Articles/42279/%2FArticles%2F42279%2FInvestigating-Myers-diff-algorithm-Part-1-of-2 type Op struct { Kind OpKind Content string I1, I2 int // indices of the line in a J1, J2 int // indices of the line in b } type OpKind int const ( Delete OpKind = iota Insert Equal ) func (k OpKind) String() string { switch k { case Delete: return "delete" case Insert: return "insert" case Equal: return "equal" default: panic("unknown operation kind") } } func ApplyEdits(a []string, operations []*Op) []string { var b []string var prevI2 int for _, op := range operations { // catch up to latest indices if op.I1-prevI2 > 0 { for _, c := range a[prevI2:op.I1] { b = append(b, c) } } switch op.Kind { case Equal, Insert: b = append(b, op.Content) } prevI2 = op.I2 } // final catch up if len(a)-prevI2 > 0 { for _, c := range a[prevI2:len(a)] { b = append(b, c) } } return b } // Operations returns the list of operations to convert a into b, consolidating // operations for multiple lines and not including equal lines. func Operations(a, b []string) []*Op { trace, offset := shortestEditSequence(a, b) snakes := backtrack(trace, len(a), len(b), offset) var i int solution := make([]*Op, len(a)+len(b)) add := func(op *Op, i2, j2 int) { if op == nil { return } op.I2 = i2 op.J2 = j2 if op.Kind == Insert { op.Content = strings.Join(b[op.J1:op.J2], "") } solution[i] = op i++ } x, y := 0, 0 for _, snake := range snakes { if len(snake) < 2 { continue } var op *Op // delete (horizontal) for snake[0]-snake[1] > x-y { if op == nil { op = &Op{ Kind: Delete, I1: x, J1: y, } } x++ if x == len(a) { break } } add(op, x, y) op = nil // insert (vertical) for snake[0]-snake[1] < x-y { if op == nil { op = &Op{ Kind: Insert, I1: x, J1: y, } } y++ } add(op, x, y) op = nil // equal (diagonal) for x < snake[0] { x++ y++ } if x >= len(a) && y >= len(b) { break } } return solution[:i] } // Lines returns a list of per-line operations to convert a into b. func Lines(a, b []string) []*Op { trace, offset := shortestEditSequence(a, b) snakes := backtrack(trace, len(a), len(b), offset) var i int solution := make([]*Op, len(a)+len(b)) x, y := 0, 0 for _, snake := range snakes { if len(snake) < 2 { continue } // horizontal for snake[0]-snake[1] > x-y { solution[i] = &Op{ Kind: Delete, Content: a[x], } i++ x++ if x == len(a) { break } } // vertical for snake[0]-snake[1] < x-y { solution[i] = &Op{ Kind: Insert, Content: b[y], } i++ y++ } // diagonal for x < snake[0] { solution[i] = &Op{ Kind: Equal, Content: a[x], } i++ x++ y++ } if x >= len(a) && y >= len(b) { break } } return solution[:i] } // backtrack uses the trace for the edit sequence computation and returns the // "snakes" that make up the solution. A "snake" is a single deletion or // insertion followed by zero or diagnonals. func backtrack(trace [][]int, x, y, offset int) [][]int { snakes := make([][]int, len(trace)) d := len(trace) - 1 for ; x > 0 && y > 0 && d > 0; d-- { V := trace[d] if len(V) == 0 { continue } snakes[d] = []int{x, y} k := x - y var kPrev int if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) { kPrev = k + 1 } else { kPrev = k - 1 } x = V[kPrev+offset] y = x - kPrev } // this feels questionable if x < 0 || y < 0 { return snakes } snakes[d] = []int{x, y} return snakes } // shortestEditSequence returns the shortest edit sequence that converts a into b. func shortestEditSequence(a, b []string) ([][]int, int) { M, N := len(a), len(b) V := make([]int, 2*(N+M)+1) offset := N + M trace := make([][]int, N+M+1) // Iterate through the maximum possible length of the SES (N+M). for d := 0; d <= N+M; d++ { // k lines are represented by the equation y = x - k. We move in // increments of 2 because end points for even d are on even k lines. for k := -d; k <= d; k += 2 { // At each point, we either go down or to the right. We go down if // k == -d, and we go to the right if k == d. We also prioritize // the maximum x value, because we prefer deletions to insertions. var x int if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) { x = V[k+1+offset] // down } else { x = V[k-1+offset] + 1 // right } y := x - k // Diagonal moves while we have equal contents. for x < M && y < N && a[x] == b[y] { x++ y++ } V[k+offset] = x // Save the state of the array. copyV := make([]int, len(V)) copy(copyV, V) trace[d] = copyV // Return if we've exceeded the maximum values. if x >= M-1 && y >= N-1 { return trace, offset } } } return nil, 0 }