// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testing import ( "flag" "fmt" "os" "runtime" "sync" "sync/atomic" "time" ) var matchBenchmarks = flag.String("test.bench", "", "regular expression to select benchmarks to run") var benchTime = flag.Duration("test.benchtime", 1*time.Second, "approximate run time for each benchmark") var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks") // Global lock to ensure only one benchmark runs at a time. var benchmarkLock sync.Mutex // Used for every benchmark for measuring memory. var memStats runtime.MemStats // An internal type but exported because it is cross-package; part of the implementation // of the "go test" command. type InternalBenchmark struct { Name string F func(b *B) } // B is a type passed to Benchmark functions to manage benchmark // timing and to specify the number of iterations to run. type B struct { common N int previousN int // number of iterations in the previous run previousDuration time.Duration // total duration of the previous run benchmark InternalBenchmark bytes int64 timerOn bool showAllocResult bool result BenchmarkResult parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines // The initial states of memStats.Mallocs and memStats.TotalAlloc. startAllocs uint64 startBytes uint64 // The net total of this test after being run. netAllocs uint64 netBytes uint64 } // StartTimer starts timing a test. This function is called automatically // before a benchmark starts, but it can also used to resume timing after // a call to StopTimer. func (b *B) StartTimer() { if !b.timerOn { runtime.ReadMemStats(&memStats) b.startAllocs = memStats.Mallocs b.startBytes = memStats.TotalAlloc b.start = time.Now() b.timerOn = true } } // StopTimer stops timing a test. This can be used to pause the timer // while performing complex initialization that you don't // want to measure. func (b *B) StopTimer() { if b.timerOn { b.duration += time.Now().Sub(b.start) runtime.ReadMemStats(&memStats) b.netAllocs += memStats.Mallocs - b.startAllocs b.netBytes += memStats.TotalAlloc - b.startBytes b.timerOn = false } } // ResetTimer zeros the elapsed benchmark time and memory allocation counters. // It does not affect whether the timer is running. func (b *B) ResetTimer() { if b.timerOn { runtime.ReadMemStats(&memStats) b.startAllocs = memStats.Mallocs b.startBytes = memStats.TotalAlloc b.start = time.Now() } b.duration = 0 b.netAllocs = 0 b.netBytes = 0 } // SetBytes records the number of bytes processed in a single operation. // If this is called, the benchmark will report ns/op and MB/s. func (b *B) SetBytes(n int64) { b.bytes = n } // ReportAllocs enables malloc statistics for this benchmark. // It is equivalent to setting -test.benchmem, but it only affects the // benchmark function that calls ReportAllocs. func (b *B) ReportAllocs() { b.showAllocResult = true } func (b *B) nsPerOp() int64 { if b.N <= 0 { return 0 } return b.duration.Nanoseconds() / int64(b.N) } // runN runs a single benchmark for the specified number of iterations. func (b *B) runN(n int) { benchmarkLock.Lock() defer benchmarkLock.Unlock() // Try to get a comparable environment for each run // by clearing garbage from previous runs. runtime.GC() b.N = n b.parallelism = 1 b.ResetTimer() b.StartTimer() b.benchmark.F(b) b.StopTimer() b.previousN = n b.previousDuration = b.duration } func min(x, y int) int { if x > y { return y } return x } func max(x, y int) int { if x < y { return y } return x } // roundDown10 rounds a number down to the nearest power of 10. func roundDown10(n int) int { var tens = 0 // tens = floor(log_10(n)) for n >= 10 { n = n / 10 tens++ } // result = 10^tens result := 1 for i := 0; i < tens; i++ { result *= 10 } return result } // roundUp rounds x up to a number of the form [1eX, 2eX, 5eX]. func roundUp(n int) int { base := roundDown10(n) switch { case n <= base: return base case n <= (2 * base): return 2 * base case n <= (5 * base): return 5 * base default: return 10 * base } } // run times the benchmark function in a separate goroutine. func (b *B) run() BenchmarkResult { go b.launch() <-b.signal return b.result } // launch launches the benchmark function. It gradually increases the number // of benchmark iterations until the benchmark runs for a second in order // to get a reasonable measurement. It prints timing information in this form // testing.BenchmarkHello 100000 19 ns/op // launch is run by the fun function as a separate goroutine. func (b *B) launch() { // Run the benchmark for a single iteration in case it's expensive. n := 1 // Signal that we're done whether we return normally // or by FailNow's runtime.Goexit. defer func() { b.signal <- b }() b.runN(n) // Run the benchmark for at least the specified amount of time. d := *benchTime for !b.failed && b.duration < d && n < 1e9 { last := n // Predict iterations/sec. if b.nsPerOp() == 0 { n = 1e9 } else { n = int(d.Nanoseconds() / b.nsPerOp()) } // Run more iterations than we think we'll need for a second (1.5x). // Don't grow too fast in case we had timing errors previously. // Be sure to run at least one more than last time. n = max(min(n+n/2, 100*last), last+1) // Round up to something easy to read. n = roundUp(n) b.runN(n) } b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes} } // The results of a benchmark run. type BenchmarkResult struct { N int // The number of iterations. T time.Duration // The total time taken. Bytes int64 // Bytes processed in one iteration. MemAllocs uint64 // The total number of memory allocations. MemBytes uint64 // The total number of bytes allocated. } func (r BenchmarkResult) NsPerOp() int64 { if r.N <= 0 { return 0 } return r.T.Nanoseconds() / int64(r.N) } func (r BenchmarkResult) mbPerSec() float64 { if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 { return 0 } return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds() } func (r BenchmarkResult) AllocsPerOp() int64 { if r.N <= 0 { return 0 } return int64(r.MemAllocs) / int64(r.N) } func (r BenchmarkResult) AllocedBytesPerOp() int64 { if r.N <= 0 { return 0 } return int64(r.MemBytes) / int64(r.N) } func (r BenchmarkResult) String() string { mbs := r.mbPerSec() mb := "" if mbs != 0 { mb = fmt.Sprintf("\t%7.2f MB/s", mbs) } nsop := r.NsPerOp() ns := fmt.Sprintf("%10d ns/op", nsop) if r.N > 0 && nsop < 100 { // The format specifiers here make sure that // the ones digits line up for all three possible formats. if nsop < 10 { ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N)) } else { ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N)) } } return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb) } func (r BenchmarkResult) MemString() string { return fmt.Sprintf("%8d B/op\t%8d allocs/op", r.AllocedBytesPerOp(), r.AllocsPerOp()) } // An internal function but exported because it is cross-package; part of the implementation // of the "go test" command. func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) { // If no flag was specified, don't run benchmarks. if len(*matchBenchmarks) == 0 { return } for _, Benchmark := range benchmarks { matched, err := matchString(*matchBenchmarks, Benchmark.Name) if err != nil { fmt.Fprintf(os.Stderr, "testing: invalid regexp for -test.bench: %s\n", err) os.Exit(1) } if !matched { continue } for _, procs := range cpuList { runtime.GOMAXPROCS(procs) b := &B{ common: common{ signal: make(chan interface{}), }, benchmark: Benchmark, } benchName := Benchmark.Name if procs != 1 { benchName = fmt.Sprintf("%s-%d", Benchmark.Name, procs) } fmt.Printf("%s\t", benchName) r := b.run() if b.failed { // The output could be very long here, but probably isn't. // We print it all, regardless, because we don't want to trim the reason // the benchmark failed. fmt.Printf("--- FAIL: %s\n%s", benchName, b.output) continue } results := r.String() if *benchmarkMemory || b.showAllocResult { results += "\t" + r.MemString() } fmt.Println(results) // Unlike with tests, we ignore the -chatty flag and always print output for // benchmarks since the output generation time will skew the results. if len(b.output) > 0 { b.trimOutput() fmt.Printf("--- BENCH: %s\n%s", benchName, b.output) } if p := runtime.GOMAXPROCS(-1); p != procs { fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p) } } } } // trimOutput shortens the output from a benchmark, which can be very long. func (b *B) trimOutput() { // The output is likely to appear multiple times because the benchmark // is run multiple times, but at least it will be seen. This is not a big deal // because benchmarks rarely print, but just in case, we trim it if it's too long. const maxNewlines = 10 for nlCount, j := 0, 0; j < len(b.output); j++ { if b.output[j] == '\n' { nlCount++ if nlCount >= maxNewlines { b.output = append(b.output[:j], "\n\t... [output truncated]\n"...) break } } } } // A PB is used by RunParallel for running parallel benchmarks. type PB struct { globalN *uint64 // shared between all worker goroutines iteration counter grain uint64 // acquire that many iterations from globalN at once cache uint64 // local cache of acquired iterations bN uint64 // total number of iterations to execute (b.N) } // Next reports whether there are more iterations to execute. func (pb *PB) Next() bool { if pb.cache == 0 { n := atomic.AddUint64(pb.globalN, pb.grain) if n <= pb.bN { pb.cache = pb.grain } else if n < pb.bN+pb.grain { pb.cache = pb.bN + pb.grain - n } else { return false } } pb.cache-- return true } // RunParallel runs a benchmark in parallel. // It creates multiple goroutines and distributes b.N iterations among them. // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for // non-CPU-bound benchmarks, call SetParallelism before RunParallel. // RunParallel is usually used with the go test -cpu flag. // // The body function will be run in each goroutine. It should set up any // goroutine-local state and then iterate until pb.Next returns false. // It should not use the StartTimer, StopTimer, or ResetTimer functions, // because they have global effect. func (b *B) RunParallel(body func(*PB)) { // Calculate grain size as number of iterations that take ~100µs. // 100µs is enough to amortize the overhead and provide sufficient // dynamic load balancing. grain := uint64(0) if b.previousN > 0 && b.previousDuration > 0 { grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration) } if grain < 1 { grain = 1 } // We expect the inner loop and function call to take at least 10ns, // so do not do more than 100µs/10ns=1e4 iterations. if grain > 1e4 { grain = 1e4 } n := uint64(0) numProcs := b.parallelism * runtime.GOMAXPROCS(0) var wg sync.WaitGroup wg.Add(numProcs) for p := 0; p < numProcs; p++ { go func() { defer wg.Done() pb := &PB{ globalN: &n, grain: grain, bN: uint64(b.N), } body(pb) }() } wg.Wait() if n <= uint64(b.N) && !b.Failed() { b.Fatal("RunParallel: body exited without pb.Next() == false") } } // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS. // There is usually no need to call SetParallelism for CPU-bound benchmarks. // If p is less than 1, this call will have no effect. func (b *B) SetParallelism(p int) { if p >= 1 { b.parallelism = p } } // Benchmark benchmarks a single function. Useful for creating // custom benchmarks that do not use the "go test" command. func Benchmark(f func(b *B)) BenchmarkResult { b := &B{ common: common{ signal: make(chan interface{}), }, benchmark: InternalBenchmark{"", f}, } return b.run() }