// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // See malloc.h for overview. // // TODO(rsc): double-check stats. package runtime #include "runtime.h" #include "malloc.h" #include "defs.h" #include "type.h" MHeap mheap; MStats mstats; // Same algorithm from chan.c, but a different // instance of the static uint32 x. // Not protected by a lock - let the threads use // the same random number if they like. static uint32 fastrand1(void) { static uint32 x = 0x49f6428aUL; x += x; if(x & 0x80000000L) x ^= 0x88888eefUL; return x; } // Allocate an object of at least size bytes. // Small objects are allocated from the per-thread cache's free lists. // Large objects (> 32 kB) are allocated straight from the heap. void* mallocgc(uintptr size, uint32 refflag, int32 dogc, int32 zeroed, int32 skip_depth) { int32 sizeclass; MCache *c; uintptr npages; MSpan *s; void *v; uint32 *ref; if(gcwaiting && g != m->g0 && m->locks == 0) gosched(); if(m->mallocing) throw("malloc/free - deadlock"); m->mallocing = 1; if(size == 0) size = 1; mstats.nmalloc++; if(size <= MaxSmallSize) { // Allocate from mcache free lists. sizeclass = SizeToClass(size); size = class_to_size[sizeclass]; c = m->mcache; v = MCache_Alloc(c, sizeclass, size, zeroed); if(v == nil) throw("out of memory"); mstats.alloc += size; mstats.total_alloc += size; mstats.by_size[sizeclass].nmalloc++; if(!mlookup(v, nil, nil, nil, &ref)) { printf("malloc %D; mlookup failed\n", (uint64)size); throw("malloc mlookup"); } *ref = RefNone | refflag; } else { // TODO(rsc): Report tracebacks for very large allocations. // Allocate directly from heap. npages = size >> PageShift; if((size & PageMask) != 0) npages++; s = MHeap_Alloc(&mheap, npages, 0, 1); if(s == nil) throw("out of memory"); size = npages<start << PageShift); // setup for mark sweep s->gcref0 = RefNone | refflag; ref = &s->gcref0; } m->mallocing = 0; if(!(refflag & RefNoProfiling) && malloc_profile != MProf_None) { switch(malloc_profile) { case MProf_Sample: if(m->mcache->next_sample > size) { m->mcache->next_sample -= size; break; } m->mcache->next_sample = fastrand1() & (256*1024 - 1); // sample every 128 kB allocated, on average // fall through case MProf_All: *ref |= RefProfiled; MProf_Malloc(skip_depth+1, v, size); break; } } if(dogc && mstats.heap_alloc >= mstats.next_gc) gc(0); return v; } void* malloc(uintptr size) { return mallocgc(size, 0, 0, 1, 1); } // Free the object whose base pointer is v. void free(void *v) { int32 sizeclass, size; MSpan *s; MCache *c; uint32 prof, *ref; if(v == nil) return; if(m->mallocing) throw("malloc/free - deadlock"); m->mallocing = 1; if(!mlookup(v, nil, nil, &s, &ref)) { printf("free %p: not an allocated block\n", v); throw("free mlookup"); } prof = *ref & RefProfiled; *ref = RefFree; // Find size class for v. sizeclass = s->sizeclass; if(sizeclass == 0) { // Large object. if(prof) MProf_Free(v, s->npages<npages<npages<mcache; size = class_to_size[sizeclass]; if(size > sizeof(uintptr)) ((uintptr*)v)[1] = 1; // mark as "needs to be zeroed" if(prof) MProf_Free(v, size); mstats.alloc -= size; mstats.by_size[sizeclass].nfree++; MCache_Free(c, v, sizeclass, size); } m->mallocing = 0; } int32 mlookup(void *v, byte **base, uintptr *size, MSpan **sp, uint32 **ref) { uintptr n, nobj, i; byte *p; MSpan *s; mstats.nlookup++; s = MHeap_LookupMaybe(&mheap, (uintptr)v>>PageShift); if(sp) *sp = s; if(s == nil) { if(base) *base = nil; if(size) *size = 0; if(ref) *ref = 0; return 0; } p = (byte*)((uintptr)s->start<sizeclass == 0) { // Large object. if(base) *base = p; if(size) *size = s->npages<gcref0; return 1; } if((byte*)v >= (byte*)s->gcref) { // pointers into the gc ref counts // do not count as pointers. return 0; } n = class_to_size[s->sizeclass]; i = ((byte*)v - p)/n; if(base) *base = p + i*n; if(size) *size = n; // good for error checking, but expensive if(0) { nobj = (s->npages << PageShift) / (n + RefcountOverhead); if((byte*)s->gcref < p || (byte*)(s->gcref+nobj) > p+(s->npages<state, s, p, s->sizeclass, (uint64)nobj, (uint64)n, (uint64)s->npages); printf("s->base sizeclass %d v=%p base=%p gcref=%p blocksize=%D nobj=%D size=%D end=%p end=%p\n", s->sizeclass, v, p, s->gcref, (uint64)s->npages<gcref + nobj, p+(s->npages<gcref[i]; return 1; } MCache* allocmcache(void) { return FixAlloc_Alloc(&mheap.cachealloc); } void mallocinit(void) { InitSizes(); MHeap_Init(&mheap, SysAlloc); m->mcache = allocmcache(); // See if it works. free(malloc(1)); } // Runtime stubs. void* mal(uintptr n) { return mallocgc(n, 0, 1, 1, 2); } void* malx(uintptr n, int32 skip_delta) { return mallocgc(n, 0, 1, 1, 2+skip_delta); } // Stack allocator uses malloc/free most of the time, // but if we're in the middle of malloc and need stack, // we have to do something else to avoid deadlock. // In that case, we fall back on a fixed-size free-list // allocator, assuming that inside malloc all the stack // frames are small, so that all the stack allocations // will be a single size, the minimum (right now, 5k). struct { Lock; FixAlloc; } stacks; void* stackalloc(uint32 n) { void *v; uint32 *ref; if(m->mallocing || m->gcing) { lock(&stacks); if(stacks.size == 0) FixAlloc_Init(&stacks, n, SysAlloc, nil, nil); if(stacks.size != n) { printf("stackalloc: in malloc, size=%D want %d", (uint64)stacks.size, n); throw("stackalloc"); } v = FixAlloc_Alloc(&stacks); unlock(&stacks); return v; } v = mallocgc(n, RefNoProfiling, 0, 0, 0); if(!mlookup(v, nil, nil, nil, &ref)) throw("stackalloc mlookup"); *ref = RefStack; return v; } void stackfree(void *v) { if(m->mallocing || m->gcing) { lock(&stacks); FixAlloc_Free(&stacks, v); unlock(&stacks); return; } free(v); } func Alloc(n uintptr) (p *byte) { p = malloc(n); } func Free(p *byte) { free(p); } func Lookup(p *byte) (base *byte, size uintptr) { mlookup(p, &base, &size, nil, nil); } func GC() { gc(1); } func SetFinalizer(obj Eface, finalizer Eface) { byte *base; uintptr size; FuncType *ft; int32 i, nret; Type *t; if(obj.type == nil) { printf("runtime.SetFinalizer: first argument is nil interface\n"); throw: throw("runtime.SetFinalizer"); } if(obj.type->kind != KindPtr) { printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string); goto throw; } if(!mlookup(obj.data, &base, &size, nil, nil) || obj.data != base) { printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n"); goto throw; } nret = 0; if(finalizer.type != nil) { if(finalizer.type->kind != KindFunc) { badfunc: printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.type->string, *obj.type->string); goto throw; } ft = (FuncType*)finalizer.type; if(ft->dotdotdot || ft->in.len != 1 || *(Type**)ft->in.array != obj.type) goto badfunc; // compute size needed for return parameters for(i=0; iout.len; i++) { t = ((Type**)ft->out.array)[i]; nret = (nret + t->align - 1) & ~(t->align - 1); nret += t->size; } nret = (nret + sizeof(void*)-1) & ~(sizeof(void*)-1); if(getfinalizer(obj.data, 0, nil)) { printf("runtime.SetFinalizer: finalizer already set"); goto throw; } } addfinalizer(obj.data, finalizer.data, nret); }