// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup. // It has gotten completely out of control. // Garbage collector (GC). // // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is // non-generational and non-compacting. Allocation is done using size segregated per P allocation // areas to minimize fragmentation while eliminating locks in the common case. // // The algorithm decomposes into several steps. // This is a high level description of the algorithm being used. For an overview of GC a good // place to start is Richard Jones' gchandbook.org. // // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978. // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978), // 966-975. // For journal quality proofs that these steps are complete, correct, and terminate see // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world. // Concurrency and Computation: Practice and Experience 15(3-5), 2003. // // 0. Set phase = GCscan from GCoff. // 1. Wait for all P's to acknowledge phase change. // At this point all goroutines have passed through a GC safepoint and // know we are in the GCscan phase. // 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers // (marking avoids most duplicate enqueuing but races may produce benign duplication). // Preempted goroutines are scanned before P schedules next goroutine. // 3. Set phase = GCmark. // 4. Wait for all P's to acknowledge phase change. // 5. Now write barrier marks and enqueues black, grey, or white to white pointers. // Malloc still allocates white (non-marked) objects. // 6. Meanwhile GC transitively walks the heap marking reachable objects. // 7. When GC finishes marking heap, it preempts P's one-by-one and // retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine // currently scheduled on the P). // 8. Once the GC has exhausted all available marking work it sets phase = marktermination. // 9. Wait for all P's to acknowledge phase change. // 10. Malloc now allocates black objects, so number of unmarked reachable objects // monotonically decreases. // 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet // reachable objects. // 12. When GC completes a full cycle over P's and discovers no new grey // objects, (which means all reachable objects are marked) set phase = GCsweep. // 13. Wait for all P's to acknowledge phase change. // 14. Now malloc allocates white (but sweeps spans before use). // Write barrier becomes nop. // 15. GC does background sweeping, see description below. // 16. When sweeping is complete set phase to GCoff. // 17. When sufficient allocation has taken place replay the sequence starting at 0 above, // see discussion of GC rate below. // Changing phases. // Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase. // All phase action must be benign in the presence of a change. // Starting with GCoff // GCoff to GCscan // GSscan scans stacks and globals greying them and never marks an object black. // Once all the P's are aware of the new phase they will scan gs on preemption. // This means that the scanning of preempted gs can't start until all the Ps // have acknowledged. // GCscan to GCmark // GCMark turns on the write barrier which also only greys objects. No scanning // of objects (making them black) can happen until all the Ps have acknowledged // the phase change. // GCmark to GCmarktermination // The only change here is that we start allocating black so the Ps must acknowledge // the change before we begin the termination algorithm // GCmarktermination to GSsweep // Object currently on the freelist must be marked black for this to work. // Are things on the free lists black or white? How does the sweep phase work? // Concurrent sweep. // The sweep phase proceeds concurrently with normal program execution. // The heap is swept span-by-span both lazily (when a goroutine needs another span) // and concurrently in a background goroutine (this helps programs that are not CPU bound). // However, at the end of the stop-the-world GC phase we don't know the size of the live heap, // and so next_gc calculation is tricky and happens as follows. // At the end of the stop-the-world phase next_gc is conservatively set based on total // heap size; all spans are marked as "needs sweeping". // Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory. // The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc // closer to the target value. However, this is not enough to avoid over-allocating memory. // Consider that a goroutine wants to allocate a new span for a large object and // there are no free swept spans, but there are small-object unswept spans. // If the goroutine naively allocates a new span, it can surpass the yet-unknown // target next_gc value. In order to prevent such cases (1) when a goroutine needs // to allocate a new small-object span, it sweeps small-object spans for the same // object size until it frees at least one object; (2) when a goroutine needs to // allocate large-object span from heap, it sweeps spans until it frees at least // that many pages into heap. Together these two measures ensure that we don't surpass // target next_gc value by a large margin. There is an exception: if a goroutine sweeps // and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span, // but there can still be other one-page unswept spans which could be combined into a // two-page span. // It's critical to ensure that no operations proceed on unswept spans (that would corrupt // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. // When a goroutine explicitly frees an object or sets a finalizer, it ensures that // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). // The finalizer goroutine is kicked off only when all spans are swept. // When the next GC starts, it sweeps all not-yet-swept spans (if any). // GC rate. // Next GC is after we've allocated an extra amount of memory proportional to // the amount already in use. The proportion is controlled by GOGC environment variable // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M // (this mark is tracked in next_gc variable). This keeps the GC cost in linear // proportion to the allocation cost. Adjusting GOGC just changes the linear constant // (and also the amount of extra memory used). package runtime import "unsafe" const ( _DebugGC = 0 _ConcurrentSweep = true _FinBlockSize = 4 * 1024 _RootData = 0 _RootBss = 1 _RootFinalizers = 2 _RootSpans = 3 _RootFlushCaches = 4 _RootCount = 5 ) // linker-provided var data, edata, bss, ebss, gcdata, gcbss, noptrdata, enoptrdata, noptrbss, enoptrbss, end struct{} //go:linkname weak_cgo_allocate go.weak.runtime._cgo_allocate_internal var weak_cgo_allocate byte // Is _cgo_allocate linked into the binary? //go:nowritebarrier func have_cgo_allocate() bool { return &weak_cgo_allocate != nil } // Slow for now as we serialize this, since this is on a debug path // speed is not critical at this point. var andlock mutex //go:nowritebarrier func atomicand8(src *byte, val byte) { lock(&andlock) *src &= val unlock(&andlock) } var gcdatamask bitvector var gcbssmask bitvector // heapminimum is the minimum number of bytes in the heap. // This cleans up the corner case of where we have a very small live set but a lot // of allocations and collecting every GOGC * live set is expensive. var heapminimum = uint64(4 << 20) // Initialized from $GOGC. GOGC=off means no GC. var gcpercent int32 func gcinit() { if unsafe.Sizeof(workbuf{}) != _WorkbufSize { throw("size of Workbuf is suboptimal") } work.markfor = parforalloc(_MaxGcproc) gcpercent = readgogc() gcdatamask = unrollglobgcprog((*byte)(unsafe.Pointer(&gcdata)), uintptr(unsafe.Pointer(&edata))-uintptr(unsafe.Pointer(&data))) gcbssmask = unrollglobgcprog((*byte)(unsafe.Pointer(&gcbss)), uintptr(unsafe.Pointer(&ebss))-uintptr(unsafe.Pointer(&bss))) memstats.next_gc = heapminimum } func setGCPercent(in int32) (out int32) { lock(&mheap_.lock) out = gcpercent if in < 0 { in = -1 } gcpercent = in unlock(&mheap_.lock) return out } // Trigger the concurrent GC when 1/triggerratio memory is available to allocate. // Adjust this ratio as part of a scheme to ensure that mutators have enough // memory to allocate in durring a concurrent GC cycle. var triggerratio = int64(8) // Determine whether to initiate a GC. // If the GC is already working no need to trigger another one. // This should establish a feedback loop where if the GC does not // have sufficient time to complete then more memory will be // requested from the OS increasing heap size thus allow future // GCs more time to complete. // memstat.heap_alloc and memstat.next_gc reads have benign races // A false negative simple does not start a GC, a false positive // will start a GC needlessly. Neither have correctness issues. func shouldtriggergc() bool { return triggerratio*(int64(memstats.next_gc)-int64(memstats.heap_alloc)) <= int64(memstats.next_gc) && atomicloaduint(&bggc.working) == 0 } var work struct { full uint64 // lock-free list of full blocks workbuf empty uint64 // lock-free list of empty blocks workbuf partial uint64 // lock-free list of partially filled blocks workbuf pad0 [_CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait nproc uint32 tstart int64 nwait uint32 ndone uint32 alldone note markfor *parfor // Copy of mheap.allspans for marker or sweeper. spans []*mspan } // GC runs a garbage collection. func GC() { startGC(gcForceBlockMode) } const ( gcBackgroundMode = iota // concurrent GC gcForceMode // stop-the-world GC now gcForceBlockMode // stop-the-world GC now and wait for sweep ) func startGC(mode int) { // The gc is turned off (via enablegc) until the bootstrap has completed. // Also, malloc gets called in the guts of a number of libraries that might be // holding locks. To avoid deadlocks during stoptheworld, don't bother // trying to run gc while holding a lock. The next mallocgc without a lock // will do the gc instead. mp := acquirem() if gp := getg(); gp == mp.g0 || mp.locks > 1 || !memstats.enablegc || panicking != 0 || gcpercent < 0 { releasem(mp) return } releasem(mp) mp = nil if mode != gcBackgroundMode { // special synchronous cases gc(mode) return } // trigger concurrent GC lock(&bggc.lock) if !bggc.started { bggc.working = 1 bggc.started = true go backgroundgc() } else if bggc.working == 0 { bggc.working = 1 ready(bggc.g) } unlock(&bggc.lock) } // State of the background concurrent GC goroutine. var bggc struct { lock mutex g *g working uint started bool } // backgroundgc is running in a goroutine and does the concurrent GC work. // bggc holds the state of the backgroundgc. func backgroundgc() { bggc.g = getg() for { gc(gcBackgroundMode) lock(&bggc.lock) bggc.working = 0 goparkunlock(&bggc.lock, "Concurrent GC wait", traceEvGoBlock) } } func gc(mode int) { // Ok, we're doing it! Stop everybody else semacquire(&worldsema, false) // Pick up the remaining unswept/not being swept spans concurrently for gosweepone() != ^uintptr(0) { sweep.nbgsweep++ } mp := acquirem() mp.preemptoff = "gcing" releasem(mp) gctimer.count++ if mode == gcBackgroundMode { gctimer.cycle.sweepterm = nanotime() } if trace.enabled { traceGoSched() traceGCStart() } systemstack(stoptheworld) systemstack(finishsweep_m) // finish sweep before we start concurrent scan. if mode == gcBackgroundMode { // Do as much work concurrently as possible systemstack(func() { gcphase = _GCscan // Concurrent scan. starttheworld() gctimer.cycle.scan = nanotime() gcscan_m() gctimer.cycle.installmarkwb = nanotime() // Sync. stoptheworld() gcphase = _GCmark harvestwbufs() // Concurrent mark. starttheworld() gctimer.cycle.mark = nanotime() var gcw gcWork gcDrain(&gcw) gcw.dispose() // Begin mark termination. gctimer.cycle.markterm = nanotime() stoptheworld() gcphase = _GCoff }) } else { // For non-concurrent GC (mode != gcBackgroundMode) // The g stacks have not been scanned so clear g state // such that mark termination scans all stacks. gcResetGState() } startTime := nanotime() if mp != acquirem() { throw("gcwork: rescheduled") } // TODO(rsc): Should the concurrent GC clear pools earlier? clearpools() _g_ := getg() _g_.m.traceback = 2 gp := _g_.m.curg casgstatus(gp, _Grunning, _Gwaiting) gp.waitreason = "garbage collection" // Run gc on the g0 stack. We do this so that the g stack // we're currently running on will no longer change. Cuts // the root set down a bit (g0 stacks are not scanned, and // we don't need to scan gc's internal state). We also // need to switch to g0 so we can shrink the stack. systemstack(func() { gcMark(startTime) if debug.gccheckmark > 0 { // Run a full stop-the-world mark using checkmark bits, // to check that we didn't forget to mark anything during // the concurrent mark process. initCheckmarks() gcMark(startTime) clearCheckmarks() } gcSweep(mode) if debug.gctrace > 1 { startTime = nanotime() // The g stacks have been scanned so // they have gcscanvalid==true and gcworkdone==true. // Reset these so that all stacks will be rescanned. gcResetGState() finishsweep_m() gcMark(startTime) gcSweep(mode) } }) _g_.m.traceback = 0 casgstatus(gp, _Gwaiting, _Grunning) if trace.enabled { traceGCDone() traceGoStart() } // all done mp.preemptoff = "" if mode == gcBackgroundMode { gctimer.cycle.sweep = nanotime() } semrelease(&worldsema) if mode == gcBackgroundMode { if gctimer.verbose > 1 { GCprinttimes() } else if gctimer.verbose > 0 { calctimes() // ignore result } } systemstack(starttheworld) releasem(mp) mp = nil // now that gc is done, kick off finalizer thread if needed if !concurrentSweep { // give the queued finalizers, if any, a chance to run Gosched() } } // gcMark runs the mark (or, for concurrent GC, mark termination) // STW is in effect at this point. //TODO go:nowritebarrier func gcMark(start_time int64) { if debug.allocfreetrace > 0 { tracegc() } t0 := start_time work.tstart = start_time gcphase = _GCmarktermination var t1 int64 if debug.gctrace > 0 { t1 = nanotime() } gcCopySpans() work.nwait = 0 work.ndone = 0 work.nproc = uint32(gcprocs()) if trace.enabled { traceGCScanStart() } parforsetup(work.markfor, work.nproc, uint32(_RootCount+allglen), false, markroot) if work.nproc > 1 { noteclear(&work.alldone) helpgc(int32(work.nproc)) } var t2 int64 if debug.gctrace > 0 { t2 = nanotime() } harvestwbufs() // move local workbufs onto global queues where the GC can find them gchelperstart() parfordo(work.markfor) var gcw gcWork gcDrain(&gcw) gcw.dispose() if work.full != 0 { throw("work.full != 0") } if work.partial != 0 { throw("work.partial != 0") } gcphase = _GCoff var t3 int64 if debug.gctrace > 0 { t3 = nanotime() } if work.nproc > 1 { notesleep(&work.alldone) } if trace.enabled { traceGCScanDone() } shrinkfinish() cachestats() // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap // estimate what was live heap size after previous GC (for printing only) heap0 := memstats.next_gc * 100 / (uint64(gcpercent) + 100) // conservatively set next_gc to high value assuming that everything is live // concurrent/lazy sweep will reduce this number while discovering new garbage memstats.next_gc = memstats.heap_alloc + memstats.heap_alloc*uint64(gcpercent)/100 if memstats.next_gc < heapminimum { memstats.next_gc = heapminimum } if trace.enabled { traceNextGC() } t4 := nanotime() atomicstore64(&memstats.last_gc, uint64(unixnanotime())) // must be Unix time to make sense to user memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(t4 - t0) memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(t4) memstats.pause_total_ns += uint64(t4 - t0) memstats.numgc++ if memstats.debuggc { print("pause ", t4-t0, "\n") } if debug.gctrace > 0 { heap1 := memstats.heap_alloc var stats gcstats updatememstats(&stats) if heap1 != memstats.heap_alloc { print("runtime: mstats skew: heap=", heap1, "/", memstats.heap_alloc, "\n") throw("mstats skew") } obj := memstats.nmalloc - memstats.nfree stats.nprocyield += work.markfor.nprocyield stats.nosyield += work.markfor.nosyield stats.nsleep += work.markfor.nsleep print("gc", memstats.numgc, "(", work.nproc, "): ", (t1-t0)/1000, "+", (t2-t1)/1000, "+", (t3-t2)/1000, "+", (t4-t3)/1000, " us, ", heap0>>20, " -> ", heap1>>20, " MB, ", obj, " (", memstats.nmalloc, "-", memstats.nfree, ") objects, ", gcount(), " goroutines, ", len(work.spans), "/", sweep.nbgsweep, "/", sweep.npausesweep, " sweeps, ", stats.nhandoff, "(", stats.nhandoffcnt, ") handoff, ", work.markfor.nsteal, "(", work.markfor.nstealcnt, ") steal, ", stats.nprocyield, "/", stats.nosyield, "/", stats.nsleep, " yields\n") sweep.nbgsweep = 0 sweep.npausesweep = 0 } } func gcSweep(mode int) { gcCopySpans() lock(&mheap_.lock) mheap_.sweepgen += 2 mheap_.sweepdone = 0 sweep.spanidx = 0 unlock(&mheap_.lock) if !_ConcurrentSweep || mode == gcForceBlockMode { // Special case synchronous sweep. // Sweep all spans eagerly. for sweepone() != ^uintptr(0) { sweep.npausesweep++ } // Do an additional mProf_GC, because all 'free' events are now real as well. mProf_GC() mProf_GC() return } // Background sweep. lock(&sweep.lock) if !sweep.started { go bgsweep() sweep.started = true } else if sweep.parked { sweep.parked = false ready(sweep.g) } unlock(&sweep.lock) mProf_GC() } func gcCopySpans() { // Cache runtime.mheap_.allspans in work.spans to avoid conflicts with // resizing/freeing allspans. // New spans can be created while GC progresses, but they are not garbage for // this round: // - new stack spans can be created even while the world is stopped. // - new malloc spans can be created during the concurrent sweep // Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap. lock(&mheap_.lock) // Free the old cached mark array if necessary. if work.spans != nil && &work.spans[0] != &h_allspans[0] { sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys) } // Cache the current array for sweeping. mheap_.gcspans = mheap_.allspans work.spans = h_allspans unlock(&mheap_.lock) } // gcResetGState resets the GC state of all G's and returns the length // of allgs. func gcResetGState() (numgs int) { // This may be called during a concurrent phase, so make sure // allgs doesn't change. lock(&allglock) for _, gp := range allgs { gp.gcworkdone = false // set to true in gcphasework gp.gcscanvalid = false // stack has not been scanned } numgs = len(allgs) unlock(&allglock) return } // Hooks for other packages var poolcleanup func() //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup func sync_runtime_registerPoolCleanup(f func()) { poolcleanup = f } func clearpools() { // clear sync.Pools if poolcleanup != nil { poolcleanup() } // Clear central sudog cache. // Leave per-P caches alone, they have strictly bounded size. // Disconnect cached list before dropping it on the floor, // so that a dangling ref to one entry does not pin all of them. lock(&sched.sudoglock) var sg, sgnext *sudog for sg = sched.sudogcache; sg != nil; sg = sgnext { sgnext = sg.next sg.next = nil } sched.sudogcache = nil unlock(&sched.sudoglock) for _, p := range &allp { if p == nil { break } // clear tinyalloc pool if c := p.mcache; c != nil { c.tiny = nil c.tinyoffset = 0 } // clear defer pools for i := range p.deferpool { // disconnect cached list before dropping it on the floor, // so that a dangling ref to one entry does not pin all of them. var d, dlink *_defer for d = p.deferpool[i]; d != nil; d = dlink { dlink = d.link d.link = nil } p.deferpool[i] = nil } } } // Timing //go:nowritebarrier func gchelper() { _g_ := getg() _g_.m.traceback = 2 gchelperstart() if trace.enabled { traceGCScanStart() } // parallel mark for over GC roots parfordo(work.markfor) if gcphase != _GCscan { var gcw gcWork gcDrain(&gcw) // blocks in getfull gcw.dispose() } if trace.enabled { traceGCScanDone() } nproc := work.nproc // work.nproc can change right after we increment work.ndone if xadd(&work.ndone, +1) == nproc-1 { notewakeup(&work.alldone) } _g_.m.traceback = 0 } func gchelperstart() { _g_ := getg() if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc { throw("gchelperstart: bad m->helpgc") } if _g_ != _g_.m.g0 { throw("gchelper not running on g0 stack") } } // gcchronograph holds timer information related to GC phases // max records the maximum time spent in each GC phase since GCstarttimes. // total records the total time spent in each GC phase since GCstarttimes. // cycle records the absolute time (as returned by nanoseconds()) that each GC phase last started at. type gcchronograph struct { count int64 verbose int64 maxpause int64 max gctimes total gctimes cycle gctimes } // gctimes records the time in nanoseconds of each phase of the concurrent GC. type gctimes struct { sweepterm int64 // stw scan int64 installmarkwb int64 // stw mark int64 markterm int64 // stw sweep int64 } var gctimer gcchronograph // GCstarttimes initializes the gc times. All previous times are lost. func GCstarttimes(verbose int64) { gctimer = gcchronograph{verbose: verbose} } // GCendtimes stops the gc timers. func GCendtimes() { gctimer.verbose = 0 } // calctimes converts gctimer.cycle into the elapsed times, updates gctimer.total // and updates gctimer.max with the max pause time. func calctimes() gctimes { var times gctimes var max = func(a, b int64) int64 { if a > b { return a } return b } times.sweepterm = gctimer.cycle.scan - gctimer.cycle.sweepterm gctimer.total.sweepterm += times.sweepterm gctimer.max.sweepterm = max(gctimer.max.sweepterm, times.sweepterm) gctimer.maxpause = max(gctimer.maxpause, gctimer.max.sweepterm) times.scan = gctimer.cycle.installmarkwb - gctimer.cycle.scan gctimer.total.scan += times.scan gctimer.max.scan = max(gctimer.max.scan, times.scan) times.installmarkwb = gctimer.cycle.mark - gctimer.cycle.installmarkwb gctimer.total.installmarkwb += times.installmarkwb gctimer.max.installmarkwb = max(gctimer.max.installmarkwb, times.installmarkwb) gctimer.maxpause = max(gctimer.maxpause, gctimer.max.installmarkwb) times.mark = gctimer.cycle.markterm - gctimer.cycle.mark gctimer.total.mark += times.mark gctimer.max.mark = max(gctimer.max.mark, times.mark) times.markterm = gctimer.cycle.sweep - gctimer.cycle.markterm gctimer.total.markterm += times.markterm gctimer.max.markterm = max(gctimer.max.markterm, times.markterm) gctimer.maxpause = max(gctimer.maxpause, gctimer.max.markterm) return times } // GCprinttimes prints latency information in nanoseconds about various // phases in the GC. The information for each phase includes the maximum pause // and total time since the most recent call to GCstarttimes as well as // the information from the most recent Concurent GC cycle. Calls from the // application to runtime.GC() are ignored. func GCprinttimes() { if gctimer.verbose == 0 { println("GC timers not enabled") return } // Explicitly put times on the heap so printPhase can use it. times := new(gctimes) *times = calctimes() cycletime := gctimer.cycle.sweep - gctimer.cycle.sweepterm pause := times.sweepterm + times.installmarkwb + times.markterm gomaxprocs := GOMAXPROCS(-1) printlock() print("GC: #", gctimer.count, " ", cycletime, "ns @", gctimer.cycle.sweepterm, " pause=", pause, " maxpause=", gctimer.maxpause, " goroutines=", allglen, " gomaxprocs=", gomaxprocs, "\n") printPhase := func(label string, get func(*gctimes) int64, procs int) { print("GC: ", label, " ", get(times), "ns\tmax=", get(&gctimer.max), "\ttotal=", get(&gctimer.total), "\tprocs=", procs, "\n") } printPhase("sweep term:", func(t *gctimes) int64 { return t.sweepterm }, gomaxprocs) printPhase("scan: ", func(t *gctimes) int64 { return t.scan }, 1) printPhase("install wb:", func(t *gctimes) int64 { return t.installmarkwb }, gomaxprocs) printPhase("mark: ", func(t *gctimes) int64 { return t.mark }, 1) printPhase("mark term: ", func(t *gctimes) int64 { return t.markterm }, gomaxprocs) printunlock() }