// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "cmd/internal/gc" "cmd/internal/obj" "cmd/internal/obj/x86" "fmt" ) /* * reg.c */ /* * peep.c */ /* * generate: * res = n; * simplifies and calls gmove. */ func cgen(n *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\ncgen-n", n) gc.Dump("cgen-res", res) } if n == nil || n.Type == nil { return } if res == nil || res.Type == nil { gc.Fatal("cgen: res nil") } for n.Op == gc.OCONVNOP { n = n.Left } switch n.Op { case gc.OSLICE, gc.OSLICEARR, gc.OSLICESTR, gc.OSLICE3, gc.OSLICE3ARR: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_slice(n, &n1) cgen(&n1, res) } else { gc.Cgen_slice(n, res) } return case gc.OEFACE: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_eface(n, &n1) cgen(&n1, res) } else { gc.Cgen_eface(n, res) } return } if n.Ullman >= gc.UINF { if n.Op == gc.OINDREG { gc.Fatal("cgen: this is going to misscompile") } if res.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, n.Type) cgen(n, &n1) cgen(&n1, res) return } } if gc.Isfat(n.Type) { if n.Type.Width < 0 { gc.Fatal("forgot to compute width for %v", gc.Tconv(n.Type, 0)) } sgen(n, res, n.Type.Width) return } if res.Addable == 0 { if n.Ullman > res.Ullman { var n1 gc.Node regalloc(&n1, n.Type, res) cgen(n, &n1) if n1.Ullman > res.Ullman { gc.Dump("n1", &n1) gc.Dump("res", res) gc.Fatal("loop in cgen") } cgen(&n1, res) regfree(&n1) return } var f int if res.Ullman >= gc.UINF { goto gen } if gc.Complexop(n, res) { gc.Complexgen(n, res) return } f = 1 // gen thru register switch n.Op { case gc.OLITERAL: if gc.Smallintconst(n) { f = 0 } case gc.OREGISTER: f = 0 } if !gc.Iscomplex[n.Type.Etype] { a := optoas(gc.OAS, res.Type) var addr obj.Addr if sudoaddable(a, res, &addr) { var p1 *obj.Prog if f != 0 { var n2 gc.Node regalloc(&n2, res.Type, nil) cgen(n, &n2) p1 = gins(a, &n2, nil) regfree(&n2) } else { p1 = gins(a, n, nil) } p1.To = addr if gc.Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } sudoclean() return } } gen: var n1 gc.Node igen(res, &n1, nil) cgen(n, &n1) regfree(&n1) return } // update addressability for string, slice // can't do in walk because n->left->addable // changes if n->left is an escaping local variable. switch n.Op { case gc.OSPTR, gc.OLEN: if gc.Isslice(n.Left.Type) || gc.Istype(n.Left.Type, gc.TSTRING) { n.Addable = n.Left.Addable } case gc.OCAP: if gc.Isslice(n.Left.Type) { n.Addable = n.Left.Addable } case gc.OITAB: n.Addable = n.Left.Addable } if gc.Complexop(n, res) { gc.Complexgen(n, res) return } if n.Addable != 0 { gmove(n, res) return } nl := n.Left nr := n.Right if nl != nil && nl.Ullman >= gc.UINF { if nr != nil && nr.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, nl.Type) cgen(nl, &n1) n2 := *n n2.Left = &n1 cgen(&n2, res) return } } if !gc.Iscomplex[n.Type.Etype] { a := optoas(gc.OAS, n.Type) var addr obj.Addr if sudoaddable(a, n, &addr) { if res.Op == gc.OREGISTER { p1 := gins(a, nil, res) p1.From = addr } else { var n2 gc.Node regalloc(&n2, n.Type, nil) p1 := gins(a, nil, &n2) p1.From = addr gins(a, &n2, res) regfree(&n2) } sudoclean() return } } var a int switch n.Op { default: gc.Dump("cgen", n) gc.Fatal("cgen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign)) // these call bgen to get a bool value case gc.OOROR, gc.OANDAND, gc.OEQ, gc.ONE, gc.OLT, gc.OLE, gc.OGE, gc.OGT, gc.ONOT: p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Pc gmove(gc.Nodbool(true), res) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) bgen(n, true, 0, p2) gmove(gc.Nodbool(false), res) gc.Patch(p3, gc.Pc) return case gc.OPLUS: cgen(nl, res) return // unary case gc.OCOM: a := optoas(gc.OXOR, nl.Type) var n1 gc.Node regalloc(&n1, nl.Type, nil) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, nl.Type, -1) gins(a, &n2, &n1) gmove(&n1, res) regfree(&n1) return case gc.OMINUS: if gc.Isfloat[nl.Type.Etype] { nr = gc.Nodintconst(-1) gc.Convlit(&nr, n.Type) a = optoas(gc.OMUL, nl.Type) goto sbop } a := optoas(int(n.Op), nl.Type) // unary var n1 gc.Node regalloc(&n1, nl.Type, res) cgen(nl, &n1) gins(a, nil, &n1) gmove(&n1, res) regfree(&n1) return // symmetric binary case gc.OAND, gc.OOR, gc.OXOR, gc.OADD, gc.OMUL: a = optoas(int(n.Op), nl.Type) if a == x86.AIMULB { cgen_bmul(int(n.Op), nl, nr, res) break } goto sbop // asymmetric binary case gc.OSUB: a = optoas(int(n.Op), nl.Type) goto abop case gc.OHMUL: cgen_hmul(nl, nr, res) case gc.OCONV: if n.Type.Width > nl.Type.Width { // If loading from memory, do conversion during load, // so as to avoid use of 8-bit register in, say, int(*byteptr). switch nl.Op { case gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OIND, gc.ONAME: var n1 gc.Node igen(nl, &n1, res) var n2 gc.Node regalloc(&n2, n.Type, res) gmove(&n1, &n2) gmove(&n2, res) regfree(&n2) regfree(&n1) return } } var n1 gc.Node regalloc(&n1, nl.Type, res) var n2 gc.Node regalloc(&n2, n.Type, &n1) cgen(nl, &n1) // if we do the conversion n1 -> n2 here // reusing the register, then gmove won't // have to allocate its own register. gmove(&n1, &n2) gmove(&n2, res) regfree(&n2) regfree(&n1) case gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OIND, gc.ONAME: // PHEAP or PPARAMREF var var n1 gc.Node igen(n, &n1, res) gmove(&n1, res) regfree(&n1) // interface table is first word of interface value case gc.OITAB: var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) // pointer is the first word of string or slice. case gc.OSPTR: if gc.Isconst(nl, gc.CTSTR) { var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) p1 := gins(x86.ALEAQ, nil, &n1) gc.Datastring(nl.Val.U.Sval, &p1.From) gmove(&n1, res) regfree(&n1) break } var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) case gc.OLEN: if gc.Istype(nl.Type, gc.TMAP) || gc.Istype(nl.Type, gc.TCHAN) { // map and chan have len in the first int-sized word. // a zero pointer means zero length var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, 0) n2 = n1 n2.Op = gc.OINDREG n2.Type = gc.Types[gc.Simtype[gc.TINT]] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Istype(nl.Type, gc.TSTRING) || gc.Isslice(nl.Type) { // both slice and string have len one pointer into the struct. // a zero pointer means zero length var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.Simtype[gc.TUINT]] n1.Xoffset += int64(gc.Array_nel) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OLEN: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OCAP: if gc.Istype(nl.Type, gc.TCHAN) { // chan has cap in the second int-sized word. // a zero pointer means zero length var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, 0) n2 = n1 n2.Op = gc.OINDREG n2.Xoffset = int64(gc.Widthint) n2.Type = gc.Types[gc.Simtype[gc.TINT]] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Isslice(nl.Type) { var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.Simtype[gc.TUINT]] n1.Xoffset += int64(gc.Array_cap) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OCAP: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OADDR: if n.Bounded { // let race detector avoid nil checks gc.Disable_checknil++ } agen(nl, res) if n.Bounded { gc.Disable_checknil-- } case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) cgen_callret(n, res) case gc.OCALLINTER: cgen_callinter(n, res, 0) cgen_callret(n, res) case gc.OCALLFUNC: cgen_call(n, 0) cgen_callret(n, res) case gc.OMOD, gc.ODIV: if gc.Isfloat[n.Type.Etype] { a = optoas(int(n.Op), nl.Type) goto abop } if nl.Ullman >= nr.Ullman { var n1 gc.Node regalloc(&n1, nl.Type, res) cgen(nl, &n1) cgen_div(int(n.Op), &n1, nr, res) regfree(&n1) } else { var n2 gc.Node if !gc.Smallintconst(nr) { regalloc(&n2, nr.Type, res) cgen(nr, &n2) } else { n2 = *nr } cgen_div(int(n.Op), nl, &n2, res) if n2.Op != gc.OLITERAL { regfree(&n2) } } case gc.OLSH, gc.ORSH, gc.OLROT: cgen_shift(int(n.Op), n.Bounded, nl, nr, res) } return /* * put simplest on right - we'll generate into left * and then adjust it using the computation of right. * constants and variables have the same ullman * count, so look for constants specially. * * an integer constant we can use as an immediate * is simpler than a variable - we can use the immediate * in the adjustment instruction directly - so it goes * on the right. * * other constants, like big integers or floating point * constants, require a mov into a register, so those * might as well go on the left, so we can reuse that * register for the computation. */ sbop: // symmetric binary if nl.Ullman < nr.Ullman || (nl.Ullman == nr.Ullman && (gc.Smallintconst(nl) || (nr.Op == gc.OLITERAL && !gc.Smallintconst(nr)))) { r := nl nl = nr nr = r } abop: // asymmetric binary var n1 gc.Node var n2 gc.Node if nl.Ullman >= nr.Ullman { regalloc(&n1, nl.Type, res) cgen(nl, &n1) /* * This generates smaller code - it avoids a MOV - but it's * easily 10% slower due to not being able to * optimize/manipulate the move. * To see, run: go test -bench . crypto/md5 * with and without. * if(sudoaddable(a, nr, &addr)) { p1 = gins(a, N, &n1); p1->from = addr; gmove(&n1, res); sudoclean(); regfree(&n1); goto ret; } * */ if gc.Smallintconst(nr) { n2 = *nr } else { regalloc(&n2, nr.Type, nil) cgen(nr, &n2) } } else { if gc.Smallintconst(nr) { n2 = *nr } else { regalloc(&n2, nr.Type, res) cgen(nr, &n2) } regalloc(&n1, nl.Type, nil) cgen(nl, &n1) } gins(a, &n2, &n1) gmove(&n1, res) regfree(&n1) if n2.Op != gc.OLITERAL { regfree(&n2) } return } /* * allocate a register (reusing res if possible) and generate * a = n * The caller must call regfree(a). */ func cgenr(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("cgenr-n", n) } if gc.Isfat(n.Type) { gc.Fatal("cgenr on fat node") } if n.Addable != 0 { regalloc(a, n.Type, res) gmove(n, a) return } switch n.Op { case gc.ONAME, gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: var n1 gc.Node igen(n, &n1, res) regalloc(a, gc.Types[gc.Tptr], &n1) gmove(&n1, a) regfree(&n1) default: regalloc(a, n.Type, res) cgen(n, a) } } /* * allocate a register (reusing res if possible) and generate * a = &n * The caller must call regfree(a). * The generated code checks that the result is not nil. */ func agenr(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nagenr-n", n) } nl := n.Left nr := n.Right switch n.Op { case gc.ODOT, gc.ODOTPTR, gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: var n1 gc.Node igen(n, &n1, res) regalloc(a, gc.Types[gc.Tptr], &n1) agen(&n1, a) regfree(&n1) case gc.OIND: cgenr(n.Left, a, res) gc.Cgen_checknil(a) case gc.OINDEX: freelen := 0 w := uint64(n.Type.Width) // Generate the non-addressable child first. var n3 gc.Node var nlen gc.Node var tmp gc.Node var n1 gc.Node if nr.Addable != 0 { goto irad } if nl.Addable != 0 { cgenr(nr, &n1, nil) if !gc.Isconst(nl, gc.CTSTR) { if gc.Isfixedarray(nl.Type) { agenr(nl, &n3, res) } else { igen(nl, &nlen, res) freelen = 1 nlen.Type = gc.Types[gc.Tptr] nlen.Xoffset += int64(gc.Array_array) regalloc(&n3, gc.Types[gc.Tptr], res) gmove(&nlen, &n3) nlen.Type = gc.Types[gc.Simtype[gc.TUINT]] nlen.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) } } goto index } gc.Tempname(&tmp, nr.Type) cgen(nr, &tmp) nr = &tmp irad: if !gc.Isconst(nl, gc.CTSTR) { if gc.Isfixedarray(nl.Type) { agenr(nl, &n3, res) } else { if nl.Addable == 0 { // igen will need an addressable node. var tmp2 gc.Node gc.Tempname(&tmp2, nl.Type) cgen(nl, &tmp2) nl = &tmp2 } igen(nl, &nlen, res) freelen = 1 nlen.Type = gc.Types[gc.Tptr] nlen.Xoffset += int64(gc.Array_array) regalloc(&n3, gc.Types[gc.Tptr], res) gmove(&nlen, &n3) nlen.Type = gc.Types[gc.Simtype[gc.TUINT]] nlen.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) } } if !gc.Isconst(nr, gc.CTINT) { cgenr(nr, &n1, nil) } goto index // &a is in &n3 (allocated in res) // i is in &n1 (if not constant) // len(a) is in nlen (if needed) // w is width // constant index index: if gc.Isconst(nr, gc.CTINT) { if gc.Isconst(nl, gc.CTSTR) { gc.Fatal("constant string constant index") // front end should handle } v := uint64(gc.Mpgetfix(nr.Val.U.Xval)) if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { if gc.Debug['B'] == 0 && !n.Bounded { var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Simtype[gc.TUINT]], int64(v)) if gc.Smallintconst(nr) { gins(optoas(gc.OCMP, gc.Types[gc.Simtype[gc.TUINT]]), &nlen, &n2) } else { regalloc(&tmp, gc.Types[gc.Simtype[gc.TUINT]], nil) gmove(&n2, &tmp) gins(optoas(gc.OCMP, gc.Types[gc.Simtype[gc.TUINT]]), &nlen, &tmp) regfree(&tmp) } p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.Simtype[gc.TUINT]]), nil, +1) ginscall(gc.Panicindex, -1) gc.Patch(p1, gc.Pc) } regfree(&nlen) } if v*w != 0 { ginscon(optoas(gc.OADD, gc.Types[gc.Tptr]), int64(v*w), &n3) } *a = n3 break } // type of the index t := gc.Types[gc.TUINT64] if gc.Issigned[n1.Type.Etype] { t = gc.Types[gc.TINT64] } var n2 gc.Node regalloc(&n2, t, &n1) // i gmove(&n1, &n2) regfree(&n1) if gc.Debug['B'] == 0 && !n.Bounded { // check bounds t = gc.Types[gc.Simtype[gc.TUINT]] if gc.Is64(nr.Type) { t = gc.Types[gc.TUINT64] } if gc.Isconst(nl, gc.CTSTR) { gc.Nodconst(&nlen, t, int64(len(nl.Val.U.Sval))) } else if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { if gc.Is64(nr.Type) { var n5 gc.Node regalloc(&n5, t, nil) gmove(&nlen, &n5) regfree(&nlen) nlen = n5 } } else { gc.Nodconst(&nlen, t, nl.Type.Bound) if !gc.Smallintconst(&nlen) { var n5 gc.Node regalloc(&n5, t, nil) gmove(&nlen, &n5) nlen = n5 freelen = 1 } } gins(optoas(gc.OCMP, t), &n2, &nlen) p1 := gc.Gbranch(optoas(gc.OLT, t), nil, +1) ginscall(gc.Panicindex, -1) gc.Patch(p1, gc.Pc) } if gc.Isconst(nl, gc.CTSTR) { regalloc(&n3, gc.Types[gc.Tptr], res) p1 := gins(x86.ALEAQ, nil, &n3) gc.Datastring(nl.Val.U.Sval, &p1.From) gins(x86.AADDQ, &n2, &n3) goto indexdone } if w == 0 { } else // nothing to do if w == 1 || w == 2 || w == 4 || w == 8 { p1 := gins(x86.ALEAQ, &n2, &n3) p1.From.Type = obj.TYPE_MEM p1.From.Scale = int16(w) p1.From.Index = p1.From.Reg p1.From.Reg = p1.To.Reg } else { ginscon(optoas(gc.OMUL, t), int64(w), &n2) gins(optoas(gc.OADD, gc.Types[gc.Tptr]), &n2, &n3) } indexdone: *a = n3 regfree(&n2) if freelen != 0 { regfree(&nlen) } default: regalloc(a, gc.Types[gc.Tptr], res) agen(n, a) } } /* * generate: * res = &n; * The generated code checks that the result is not nil. */ func agen(n *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nagen-res", res) gc.Dump("agen-r", n) } if n == nil || n.Type == nil { return } for n.Op == gc.OCONVNOP { n = n.Left } if gc.Isconst(n, gc.CTNIL) && n.Type.Width > int64(gc.Widthptr) { // Use of a nil interface or nil slice. // Create a temporary we can take the address of and read. // The generated code is just going to panic, so it need not // be terribly efficient. See issue 3670. var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Gvardef(&n1) clearfat(&n1) var n2 gc.Node regalloc(&n2, gc.Types[gc.Tptr], res) gins(x86.ALEAQ, &n1, &n2) gmove(&n2, res) regfree(&n2) return } if n.Addable != 0 { var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) gins(x86.ALEAQ, n, &n1) gmove(&n1, res) regfree(&n1) return } nl := n.Left switch n.Op { default: gc.Fatal("agen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign)) case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) cgen_aret(n, res) case gc.OCALLINTER: cgen_callinter(n, res, 0) cgen_aret(n, res) case gc.OCALLFUNC: cgen_call(n, 0) cgen_aret(n, res) case gc.OSLICE, gc.OSLICEARR, gc.OSLICESTR, gc.OSLICE3, gc.OSLICE3ARR: var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_slice(n, &n1) agen(&n1, res) case gc.OEFACE: var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_eface(n, &n1) agen(&n1, res) case gc.OINDEX: var n1 gc.Node agenr(n, &n1, res) gmove(&n1, res) regfree(&n1) // should only get here with names in this func. case gc.ONAME: if n.Funcdepth > 0 && n.Funcdepth != gc.Funcdepth { gc.Dump("bad agen", n) gc.Fatal("agen: bad ONAME funcdepth %d != %d", n.Funcdepth, gc.Funcdepth) } // should only get here for heap vars or paramref if n.Class&gc.PHEAP == 0 && n.Class != gc.PPARAMREF { gc.Dump("bad agen", n) gc.Fatal("agen: bad ONAME class %#x", n.Class) } cgen(n.Heapaddr, res) if n.Xoffset != 0 { ginscon(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, res) } case gc.OIND: cgen(nl, res) gc.Cgen_checknil(res) case gc.ODOT: agen(nl, res) if n.Xoffset != 0 { ginscon(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, res) } case gc.ODOTPTR: cgen(nl, res) gc.Cgen_checknil(res) if n.Xoffset != 0 { ginscon(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, res) } } } /* * generate: * newreg = &n; * res = newreg * * on exit, a has been changed to be *newreg. * caller must regfree(a). * The generated code checks that the result is not *nil. */ func igen(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nigen-n", n) } switch n.Op { case gc.ONAME: if (n.Class&gc.PHEAP != 0) || n.Class == gc.PPARAMREF { break } *a = *n return // Increase the refcount of the register so that igen's caller // has to call regfree. case gc.OINDREG: if n.Val.U.Reg != x86.REG_SP { reg[n.Val.U.Reg]++ } *a = *n return case gc.ODOT: igen(n.Left, a, res) a.Xoffset += n.Xoffset a.Type = n.Type fixlargeoffset(a) return case gc.ODOTPTR: cgenr(n.Left, a, res) gc.Cgen_checknil(a) a.Op = gc.OINDREG a.Xoffset += n.Xoffset a.Type = n.Type fixlargeoffset(a) return case gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: switch n.Op { case gc.OCALLFUNC: cgen_call(n, 0) case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) case gc.OCALLINTER: cgen_callinter(n, nil, 0) } var flist gc.Iter fp := gc.Structfirst(&flist, gc.Getoutarg(n.Left.Type)) *a = gc.Node{} a.Op = gc.OINDREG a.Val.U.Reg = x86.REG_SP a.Addable = 1 a.Xoffset = fp.Width a.Type = n.Type return // Index of fixed-size array by constant can // put the offset in the addressing. // Could do the same for slice except that we need // to use the real index for the bounds checking. case gc.OINDEX: if gc.Isfixedarray(n.Left.Type) || (gc.Isptr[n.Left.Type.Etype] && gc.Isfixedarray(n.Left.Left.Type)) { if gc.Isconst(n.Right, gc.CTINT) { // Compute &a. if !gc.Isptr[n.Left.Type.Etype] { igen(n.Left, a, res) } else { var n1 gc.Node igen(n.Left, &n1, res) gc.Cgen_checknil(&n1) regalloc(a, gc.Types[gc.Tptr], res) gmove(&n1, a) regfree(&n1) a.Op = gc.OINDREG } // Compute &a[i] as &a + i*width. a.Type = n.Type a.Xoffset += gc.Mpgetfix(n.Right.Val.U.Xval) * n.Type.Width fixlargeoffset(a) return } } } agenr(n, a, res) a.Op = gc.OINDREG a.Type = n.Type } /* * generate: * if(n == true) goto to; */ func bgen(n *gc.Node, true_ bool, likely int, to *obj.Prog) { if gc.Debug['g'] != 0 { gc.Dump("\nbgen", n) } if n == nil { n = gc.Nodbool(true) } if n.Ninit != nil { gc.Genlist(n.Ninit) } if n.Type == nil { gc.Convlit(&n, gc.Types[gc.TBOOL]) if n.Type == nil { return } } et := int(n.Type.Etype) if et != gc.TBOOL { gc.Yyerror("cgen: bad type %v for %v", gc.Tconv(n.Type, 0), gc.Oconv(int(n.Op), 0)) gc.Patch(gins(obj.AEND, nil, nil), to) return } for n.Op == gc.OCONVNOP { n = n.Left if n.Ninit != nil { gc.Genlist(n.Ninit) } } var nl *gc.Node var nr *gc.Node switch n.Op { default: goto def // need to ask if it is bool? case gc.OLITERAL: if !true_ == (n.Val.U.Bval == 0) { gc.Patch(gc.Gbranch(obj.AJMP, nil, likely), to) } return case gc.ONAME: if n.Addable == 0 { goto def } var n1 gc.Node gc.Nodconst(&n1, n.Type, 0) gins(optoas(gc.OCMP, n.Type), n, &n1) a := x86.AJNE if !true_ { a = x86.AJEQ } gc.Patch(gc.Gbranch(a, n.Type, likely), to) return case gc.OANDAND, gc.OOROR: if (n.Op == gc.OANDAND) == true_ { p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) bgen(n.Left, !true_, -likely, p2) bgen(n.Right, !true_, -likely, p2) p1 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, to) gc.Patch(p2, gc.Pc) } else { bgen(n.Left, true_, likely, to) bgen(n.Right, true_, likely, to) } return case gc.OEQ, gc.ONE, gc.OLT, gc.OGT, gc.OLE, gc.OGE: nr = n.Right if nr == nil || nr.Type == nil { return } fallthrough case gc.ONOT: // unary nl = n.Left if nl == nil || nl.Type == nil { return } } switch n.Op { case gc.ONOT: bgen(nl, !true_, likely, to) return case gc.OEQ, gc.ONE, gc.OLT, gc.OGT, gc.OLE, gc.OGE: a := int(n.Op) if !true_ { if gc.Isfloat[nr.Type.Etype] { // brcom is not valid on floats when NaN is involved. p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) ll := n.Ninit // avoid re-genning ninit n.Ninit = nil bgen(n, true, -likely, p2) n.Ninit = ll gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p2, gc.Pc) return } a = gc.Brcom(a) true_ = !true_ } // make simplest on right if nl.Op == gc.OLITERAL || (nl.Ullman < nr.Ullman && nl.Ullman < gc.UINF) { a = gc.Brrev(a) r := nl nl = nr nr = r } if gc.Isslice(nl.Type) { // front end should only leave cmp to literal nil if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL { gc.Yyerror("illegal slice comparison") break } a = optoas(a, gc.Types[gc.Tptr]) var n1 gc.Node igen(nl, &n1, nil) n1.Xoffset += int64(gc.Array_array) n1.Type = gc.Types[gc.Tptr] var tmp gc.Node gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &tmp) gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to) regfree(&n1) break } if gc.Isinter(nl.Type) { // front end should only leave cmp to literal nil if (a != gc.OEQ && a != gc.ONE) || nr.Op != gc.OLITERAL { gc.Yyerror("illegal interface comparison") break } a = optoas(a, gc.Types[gc.Tptr]) var n1 gc.Node igen(nl, &n1, nil) n1.Type = gc.Types[gc.Tptr] var tmp gc.Node gc.Nodconst(&tmp, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &tmp) gc.Patch(gc.Gbranch(a, gc.Types[gc.Tptr], likely), to) regfree(&n1) break } if gc.Iscomplex[nl.Type.Etype] { gc.Complexbool(a, nl, nr, true_, likely, to) break } var n2 gc.Node var n1 gc.Node if nr.Ullman >= gc.UINF { regalloc(&n1, nl.Type, nil) cgen(nl, &n1) var tmp gc.Node gc.Tempname(&tmp, nl.Type) gmove(&n1, &tmp) regfree(&n1) regalloc(&n2, nr.Type, nil) cgen(nr, &n2) regalloc(&n1, nl.Type, nil) cgen(&tmp, &n1) goto cmp } regalloc(&n1, nl.Type, nil) cgen(nl, &n1) if gc.Smallintconst(nr) { gins(optoas(gc.OCMP, nr.Type), &n1, nr) gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to) regfree(&n1) break } regalloc(&n2, nr.Type, nil) cgen(nr, &n2) // only < and <= work right with NaN; reverse if needed cmp: l := &n1 r := &n2 if gc.Isfloat[nl.Type.Etype] && (a == gc.OGT || a == gc.OGE) { l = &n2 r = &n1 a = gc.Brrev(a) } gins(optoas(gc.OCMP, nr.Type), l, r) if gc.Isfloat[nr.Type.Etype] && (n.Op == gc.OEQ || n.Op == gc.ONE) { if n.Op == gc.OEQ { // neither NE nor P p1 := gc.Gbranch(x86.AJNE, nil, -likely) p2 := gc.Gbranch(x86.AJPS, nil, -likely) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p1, gc.Pc) gc.Patch(p2, gc.Pc) } else { // either NE or P gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to) gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to) } } else { gc.Patch(gc.Gbranch(optoas(a, nr.Type), nr.Type, likely), to) } regfree(&n1) regfree(&n2) } return def: var n1 gc.Node regalloc(&n1, n.Type, nil) cgen(n, &n1) var n2 gc.Node gc.Nodconst(&n2, n.Type, 0) gins(optoas(gc.OCMP, n.Type), &n1, &n2) a := x86.AJNE if !true_ { a = x86.AJEQ } gc.Patch(gc.Gbranch(a, n.Type, likely), to) regfree(&n1) return } /* * n is on stack, either local variable * or return value from function call. * return n's offset from SP. */ func stkof(n *gc.Node) int64 { switch n.Op { case gc.OINDREG: return n.Xoffset case gc.ODOT: t := n.Left.Type if gc.Isptr[t.Etype] { break } off := stkof(n.Left) if off == -1000 || off == 1000 { return off } return off + n.Xoffset case gc.OINDEX: t := n.Left.Type if !gc.Isfixedarray(t) { break } off := stkof(n.Left) if off == -1000 || off == 1000 { return off } if gc.Isconst(n.Right, gc.CTINT) { return off + t.Type.Width*gc.Mpgetfix(n.Right.Val.U.Xval) } return 1000 case gc.OCALLMETH, gc.OCALLINTER, gc.OCALLFUNC: t := n.Left.Type if gc.Isptr[t.Etype] { t = t.Type } var flist gc.Iter t = gc.Structfirst(&flist, gc.Getoutarg(t)) if t != nil { return t.Width } } // botch - probably failing to recognize address // arithmetic on the above. eg INDEX and DOT return -1000 } /* * block copy: * memmove(&ns, &n, w); */ func sgen(n *gc.Node, ns *gc.Node, w int64) { if gc.Debug['g'] != 0 { fmt.Printf("\nsgen w=%d\n", w) gc.Dump("r", n) gc.Dump("res", ns) } if n.Ullman >= gc.UINF && ns.Ullman >= gc.UINF { gc.Fatal("sgen UINF") } if w < 0 { gc.Fatal("sgen copy %d", w) } // If copying .args, that's all the results, so record definition sites // for them for the liveness analysis. if ns.Op == gc.ONAME && ns.Sym.Name == ".args" { for l := gc.Curfn.Dcl; l != nil; l = l.Next { if l.N.Class == gc.PPARAMOUT { gc.Gvardef(l.N) } } } // Avoid taking the address for simple enough types. if componentgen(n, ns) { return } if w == 0 { // evaluate side effects only var nodr gc.Node regalloc(&nodr, gc.Types[gc.Tptr], nil) agen(ns, &nodr) agen(n, &nodr) regfree(&nodr) return } // offset on the stack osrc := stkof(n) odst := stkof(ns) if osrc != -1000 && odst != -1000 && (osrc == 1000 || odst == 1000) { // osrc and odst both on stack, and at least one is in // an unknown position. Could generate code to test // for forward/backward copy, but instead just copy // to a temporary location first. var tmp gc.Node gc.Tempname(&tmp, n.Type) sgen(n, &tmp, w) sgen(&tmp, ns, w) return } var noddi gc.Node gc.Nodreg(&noddi, gc.Types[gc.Tptr], x86.REG_DI) var nodsi gc.Node gc.Nodreg(&nodsi, gc.Types[gc.Tptr], x86.REG_SI) var nodl gc.Node var nodr gc.Node if n.Ullman >= ns.Ullman { agenr(n, &nodr, &nodsi) if ns.Op == gc.ONAME { gc.Gvardef(ns) } agenr(ns, &nodl, &noddi) } else { if ns.Op == gc.ONAME { gc.Gvardef(ns) } agenr(ns, &nodl, &noddi) agenr(n, &nodr, &nodsi) } if nodl.Val.U.Reg != x86.REG_DI { gmove(&nodl, &noddi) } if nodr.Val.U.Reg != x86.REG_SI { gmove(&nodr, &nodsi) } regfree(&nodl) regfree(&nodr) c := w % 8 // bytes q := w / 8 // quads var oldcx gc.Node var cx gc.Node savex(x86.REG_CX, &cx, &oldcx, nil, gc.Types[gc.TINT64]) // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && odst < osrc+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(addptr, w-1, x86.REG_SI) gconreg(addptr, w-1, x86.REG_DI) gconreg(movptr, c, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(addptr, -7, x86.REG_SI) gconreg(addptr, -7, x86.REG_DI) } else { gconreg(addptr, w-8, x86.REG_SI) gconreg(addptr, w-8, x86.REG_DI) } gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { // normal direction if q > 128 || (gc.Nacl && q >= 4) { gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 14 and 128 = magic constants: see ../../runtime/asm_amd64.s p.To.Offset = 14 * (128 - q) } else if !gc.Nacl && c == 0 { // We don't need the MOVSQ side-effect of updating SI and DI, // and issuing a sequence of MOVQs directly is faster. nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG for q > 0 { gmove(&nodsi, &cx) // MOVQ x+(SI),CX gmove(&cx, &noddi) // MOVQ CX,x+(DI) nodsi.Xoffset += 8 noddi.Xoffset += 8 q-- } } else { for q > 0 { gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ q-- } } // copy the remaining c bytes if w < 4 || c <= 1 || (odst < osrc && osrc < odst+w) { for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } else if w < 8 || c <= 4 { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT32] nodsi.Type = gc.Types[gc.TINT32] noddi.Type = gc.Types[gc.TINT32] if c > 4 { nodsi.Xoffset = 0 noddi.Xoffset = 0 gmove(&nodsi, &cx) gmove(&cx, &noddi) } nodsi.Xoffset = c - 4 noddi.Xoffset = c - 4 gmove(&nodsi, &cx) gmove(&cx, &noddi) } else { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT64] nodsi.Type = gc.Types[gc.TINT64] noddi.Type = gc.Types[gc.TINT64] nodsi.Xoffset = c - 8 noddi.Xoffset = c - 8 gmove(&nodsi, &cx) gmove(&cx, &noddi) } } restx(&cx, &oldcx) } func cadable(n *gc.Node) bool { if n.Addable == 0 { // dont know how it happens, // but it does return false } switch n.Op { case gc.ONAME: return true } return false } /* * copy a composite value by moving its individual components. * Slices, strings and interfaces are supported. * Small structs or arrays with elements of basic type are * also supported. * nr is N when assigning a zero value. * return 1 if can do, 0 if can't. */ func componentgen(nr *gc.Node, nl *gc.Node) bool { var nodl gc.Node var nodr gc.Node freel := 0 freer := 0 switch nl.Type.Etype { default: goto no case gc.TARRAY: t := nl.Type // Slices are ok. if gc.Isslice(t) { break } // Small arrays are ok. if t.Bound > 0 && t.Bound <= 3 && !gc.Isfat(t.Type) { break } goto no // Small structs with non-fat types are ok. // Zero-sized structs are treated separately elsewhere. case gc.TSTRUCT: fldcount := int64(0) for t := nl.Type.Type; t != nil; t = t.Down { if gc.Isfat(t.Type) { goto no } if t.Etype != gc.TFIELD { gc.Fatal("componentgen: not a TFIELD: %v", gc.Tconv(t, obj.FmtLong)) } fldcount++ } if fldcount == 0 || fldcount > 4 { goto no } case gc.TSTRING, gc.TINTER: break } nodl = *nl if !cadable(nl) { if nr != nil && !cadable(nr) { goto no } igen(nl, &nodl, nil) freel = 1 } if nr != nil { nodr = *nr if !cadable(nr) { igen(nr, &nodr, nil) freer = 1 } } else { // When zeroing, prepare a register containing zero. var tmp gc.Node gc.Nodconst(&tmp, nl.Type, 0) regalloc(&nodr, gc.Types[gc.TUINT], nil) gmove(&tmp, &nodr) freer = 1 } // nl and nr are 'cadable' which basically means they are names (variables) now. // If they are the same variable, don't generate any code, because the // VARDEF we generate will mark the old value as dead incorrectly. // (And also the assignments are useless.) if nr != nil && nl.Op == gc.ONAME && nr.Op == gc.ONAME && nl == nr { goto yes } switch nl.Type.Etype { // componentgen for arrays. case gc.TARRAY: if nl.Op == gc.ONAME { gc.Gvardef(nl) } t := nl.Type if !gc.Isslice(t) { nodl.Type = t.Type nodr.Type = nodl.Type for fldcount := int64(0); fldcount < t.Bound; fldcount++ { if nr == nil { gc.Clearslim(&nodl) } else { gmove(&nodr, &nodl) } nodl.Xoffset += t.Type.Width nodr.Xoffset += t.Type.Width } goto yes } // componentgen for slices. nodl.Xoffset += int64(gc.Array_array) nodl.Type = gc.Ptrto(nl.Type.Type) if nr != nil { nodr.Xoffset += int64(gc.Array_array) nodr.Type = nodl.Type } gmove(&nodr, &nodl) nodl.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) nodl.Type = gc.Types[gc.Simtype[gc.TUINT]] if nr != nil { nodr.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) nodr.Type = nodl.Type } gmove(&nodr, &nodl) nodl.Xoffset += int64(gc.Array_cap) - int64(gc.Array_nel) nodl.Type = gc.Types[gc.Simtype[gc.TUINT]] if nr != nil { nodr.Xoffset += int64(gc.Array_cap) - int64(gc.Array_nel) nodr.Type = nodl.Type } gmove(&nodr, &nodl) goto yes case gc.TSTRING: if nl.Op == gc.ONAME { gc.Gvardef(nl) } nodl.Xoffset += int64(gc.Array_array) nodl.Type = gc.Ptrto(gc.Types[gc.TUINT8]) if nr != nil { nodr.Xoffset += int64(gc.Array_array) nodr.Type = nodl.Type } gmove(&nodr, &nodl) nodl.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) nodl.Type = gc.Types[gc.Simtype[gc.TUINT]] if nr != nil { nodr.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) nodr.Type = nodl.Type } gmove(&nodr, &nodl) goto yes case gc.TINTER: if nl.Op == gc.ONAME { gc.Gvardef(nl) } nodl.Xoffset += int64(gc.Array_array) nodl.Type = gc.Ptrto(gc.Types[gc.TUINT8]) if nr != nil { nodr.Xoffset += int64(gc.Array_array) nodr.Type = nodl.Type } gmove(&nodr, &nodl) nodl.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) nodl.Type = gc.Ptrto(gc.Types[gc.TUINT8]) if nr != nil { nodr.Xoffset += int64(gc.Array_nel) - int64(gc.Array_array) nodr.Type = nodl.Type } gmove(&nodr, &nodl) goto yes case gc.TSTRUCT: if nl.Op == gc.ONAME { gc.Gvardef(nl) } loffset := nodl.Xoffset roffset := nodr.Xoffset // funarg structs may not begin at offset zero. if nl.Type.Etype == gc.TSTRUCT && nl.Type.Funarg != 0 && nl.Type.Type != nil { loffset -= nl.Type.Type.Width } if nr != nil && nr.Type.Etype == gc.TSTRUCT && nr.Type.Funarg != 0 && nr.Type.Type != nil { roffset -= nr.Type.Type.Width } for t := nl.Type.Type; t != nil; t = t.Down { nodl.Xoffset = loffset + t.Width nodl.Type = t.Type if nr == nil { gc.Clearslim(&nodl) } else { nodr.Xoffset = roffset + t.Width nodr.Type = nodl.Type gmove(&nodr, &nodl) } } goto yes } no: if freer != 0 { regfree(&nodr) } if freel != 0 { regfree(&nodl) } return false yes: if freer != 0 { regfree(&nodr) } if freel != 0 { regfree(&nodl) } return true }