// Use of this source file is governed by a BSD-style // license that can be found in the LICENSE file.` #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "stack.h" enum { ESRCH = 3, ENOTSUP = 91, // From NetBSD's sys/time.h CLOCK_REALTIME = 0, CLOCK_VIRTUAL = 1, CLOCK_PROF = 2, CLOCK_MONOTONIC = 3 }; extern SigTab runtime·sigtab[]; extern int64 runtime·rfork_thread(int32 flags, void *stack, M *m, G *g, void (*fn)(void)); extern int32 runtime·thrsleep(void *ident, int32 clock_id, void *tsp, void *lock); extern int32 runtime·thrwakeup(void *ident, int32 n); // From NetBSD's #define CTL_HW 6 #define HW_NCPU 3 static int32 getncpu(void) { uint32 mib[2]; uint32 out; int32 ret; uintptr nout; // Fetch hw.ncpu via sysctl. mib[0] = CTL_HW; mib[1] = HW_NCPU; nout = sizeof out; out = 0; ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); if(ret >= 0) return out; else return 1; } uintptr runtime·semacreate(void) { return 1; } int32 runtime·semasleep(int64 ns) { Timespec ts; // spin-mutex lock while(runtime·xchg(&m->waitsemalock, 1)) runtime·osyield(); for(;;) { // lock held if(m->waitsemacount == 0) { // sleep until semaphore != 0 or timeout. // thrsleep unlocks m->waitsemalock. if(ns < 0) runtime·thrsleep(&m->waitsemacount, 0, nil, &m->waitsemalock); else { ns += runtime·nanotime(); ts.tv_sec = ns/1000000000LL; ts.tv_nsec = ns%1000000000LL; runtime·thrsleep(&m->waitsemacount, CLOCK_REALTIME, &ts, &m->waitsemalock); } // reacquire lock while(runtime·xchg(&m->waitsemalock, 1)) runtime·osyield(); } // lock held (again) if(m->waitsemacount != 0) { // semaphore is available. m->waitsemacount--; // spin-mutex unlock runtime·atomicstore(&m->waitsemalock, 0); return 0; // semaphore acquired } // semaphore not available. // if there is a timeout, stop now. // otherwise keep trying. if(ns >= 0) break; } // lock held but giving up // spin-mutex unlock runtime·atomicstore(&m->waitsemalock, 0); return -1; } void runtime·semawakeup(M *mp) { uint32 ret; // spin-mutex lock while(runtime·xchg(&mp->waitsemalock, 1)) runtime·osyield(); mp->waitsemacount++; ret = runtime·thrwakeup(&mp->waitsemacount, 1); if(ret != 0 && ret != ESRCH) runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret); // spin-mutex unlock runtime·atomicstore(&mp->waitsemalock, 0); } // From NetBSD's sys/param.h #define RFPROC (1<<4) /* change child (else changes curproc) */ #define RFMEM (1<<5) /* share `address space' */ #define RFNOWAIT (1<<6) /* parent need not wait() on child */ #define RFTHREAD (1<<13) /* create a thread, not a process */ void runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) { int32 flags; int32 ret; flags = RFPROC | RFTHREAD | RFMEM | RFNOWAIT; if (0) { runtime·printf( "newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n", stk, m, g, fn, m->id, m->tls[0], &m); } m->tls[0] = m->id; // so 386 asm can find it if((ret = runtime·rfork_thread(flags, stk, m, g, fn)) < 0) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret); if (ret == -ENOTSUP) runtime·printf("runtime: is kern.rthreads disabled?\n"); runtime·throw("runtime.newosproc"); } } void runtime·osinit(void) { runtime·ncpu = getncpu(); } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). void runtime·minit(void) { // Initialize signal handling m->gsignal = runtime·malg(32*1024); runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); }