// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tar // TODO(dsymonds): // - pax extensions import ( "bytes" "errors" "io" "io/ioutil" "math" "strconv" "strings" "time" ) var ( ErrHeader = errors.New("archive/tar: invalid tar header") ) const maxNanoSecondIntSize = 9 // A Reader provides sequential access to the contents of a tar archive. // A tar archive consists of a sequence of files. // The Next method advances to the next file in the archive (including the first), // and then it can be treated as an io.Reader to access the file's data. type Reader struct { r io.Reader pad int64 // amount of padding (ignored) after current file entry curr numBytesReader // reader for current file entry blk block // buffer to use as temporary local storage // err is a persistent error. // It is only the responsibility of every exported method of Reader to // ensure that this error is sticky. err error } type parser struct { err error // Last error seen } // A numBytesReader is an io.Reader with a numBytes method, returning the number // of bytes remaining in the underlying encoded data. type numBytesReader interface { io.Reader numBytes() int64 } // A regFileReader is a numBytesReader for reading file data from a tar archive. type regFileReader struct { r io.Reader // underlying reader nb int64 // number of unread bytes for current file entry } // A sparseFileReader is a numBytesReader for reading sparse file data from a // tar archive. type sparseFileReader struct { rfr numBytesReader // Reads the sparse-encoded file data sp []sparseEntry // The sparse map for the file pos int64 // Keeps track of file position total int64 // Total size of the file } // A sparseEntry holds a single entry in a sparse file's sparse map. // // Sparse files are represented using a series of sparseEntrys. // Despite the name, a sparseEntry represents an actual data fragment that // references data found in the underlying archive stream. All regions not // covered by a sparseEntry are logically filled with zeros. // // For example, if the underlying raw file contains the 10-byte data: // var compactData = "abcdefgh" // // And the sparse map has the following entries: // var sp = []sparseEntry{ // {offset: 2, numBytes: 5} // Data fragment for [2..7] // {offset: 18, numBytes: 3} // Data fragment for [18..21] // } // // Then the content of the resulting sparse file with a "real" size of 25 is: // var sparseData = "\x00"*2 + "abcde" + "\x00"*11 + "fgh" + "\x00"*4 type sparseEntry struct { offset int64 // Starting position of the fragment numBytes int64 // Length of the fragment } // Keywords for GNU sparse files in a PAX extended header const ( paxGNUSparseNumBlocks = "GNU.sparse.numblocks" paxGNUSparseOffset = "GNU.sparse.offset" paxGNUSparseNumBytes = "GNU.sparse.numbytes" paxGNUSparseMap = "GNU.sparse.map" paxGNUSparseName = "GNU.sparse.name" paxGNUSparseMajor = "GNU.sparse.major" paxGNUSparseMinor = "GNU.sparse.minor" paxGNUSparseSize = "GNU.sparse.size" paxGNUSparseRealSize = "GNU.sparse.realsize" ) // NewReader creates a new Reader reading from r. func NewReader(r io.Reader) *Reader { return &Reader{r: r} } // Next advances to the next entry in the tar archive. // // io.EOF is returned at the end of the input. func (tr *Reader) Next() (*Header, error) { if tr.err != nil { return nil, tr.err } hdr, err := tr.next() tr.err = err return hdr, err } func (tr *Reader) next() (*Header, error) { var extHdrs map[string]string // Externally, Next iterates through the tar archive as if it is a series of // files. Internally, the tar format often uses fake "files" to add meta // data that describes the next file. These meta data "files" should not // normally be visible to the outside. As such, this loop iterates through // one or more "header files" until it finds a "normal file". loop: for { if err := tr.skipUnread(); err != nil { return nil, err } hdr, rawHdr, err := tr.readHeader() if err != nil { return nil, err } if err := tr.handleRegularFile(hdr); err != nil { return nil, err } // Check for PAX/GNU special headers and files. switch hdr.Typeflag { case TypeXHeader: extHdrs, err = parsePAX(tr) if err != nil { return nil, err } continue loop // This is a meta header affecting the next header case TypeGNULongName, TypeGNULongLink: realname, err := ioutil.ReadAll(tr) if err != nil { return nil, err } // Convert GNU extensions to use PAX headers. if extHdrs == nil { extHdrs = make(map[string]string) } var p parser switch hdr.Typeflag { case TypeGNULongName: extHdrs[paxPath] = p.parseString(realname) case TypeGNULongLink: extHdrs[paxLinkpath] = p.parseString(realname) } if p.err != nil { return nil, p.err } continue loop // This is a meta header affecting the next header default: // The old GNU sparse format is handled here since it is technically // just a regular file with additional attributes. if err := mergePAX(hdr, extHdrs); err != nil { return nil, err } // TODO(dsnet): The extended headers may have updated the size. // Thus, we must setup the regFileReader again here. // // See golang.org/issue/15573 if err := tr.handleSparseFile(hdr, rawHdr, extHdrs); err != nil { return nil, err } return hdr, nil // This is a file, so stop } } } // handleRegularFile sets up the current file reader and padding such that it // can only read the following logical data section. It will properly handle // special headers that contain no data section. func (tr *Reader) handleRegularFile(hdr *Header) error { nb := hdr.Size if isHeaderOnlyType(hdr.Typeflag) { nb = 0 } if nb < 0 { return ErrHeader } tr.pad = -nb & (blockSize - 1) // blockSize is a power of two tr.curr = ®FileReader{r: tr.r, nb: nb} return nil } // handleSparseFile checks if the current file is a sparse format of any type // and sets the curr reader appropriately. func (tr *Reader) handleSparseFile(hdr *Header, rawHdr *block, extHdrs map[string]string) error { var sp []sparseEntry var err error if hdr.Typeflag == TypeGNUSparse { var p parser hdr.Size = p.parseNumeric(rawHdr.GNU().RealSize()) if p.err != nil { return p.err } sp, err = tr.readOldGNUSparseMap(rawHdr) if err != nil { return err } } else { sp, err = tr.checkForGNUSparsePAXHeaders(hdr, extHdrs) if err != nil { return err } } // If sp is non-nil, then this is a sparse file. // Note that it is possible for len(sp) to be zero. if sp != nil { tr.curr, err = newSparseFileReader(tr.curr, sp, hdr.Size) } return err } // checkForGNUSparsePAXHeaders checks the PAX headers for GNU sparse headers. If they are found, then // this function reads the sparse map and returns it. Unknown sparse formats are ignored, causing the file to // be treated as a regular file. func (tr *Reader) checkForGNUSparsePAXHeaders(hdr *Header, headers map[string]string) ([]sparseEntry, error) { var sparseFormat string // Check for sparse format indicators major, majorOk := headers[paxGNUSparseMajor] minor, minorOk := headers[paxGNUSparseMinor] sparseName, sparseNameOk := headers[paxGNUSparseName] _, sparseMapOk := headers[paxGNUSparseMap] sparseSize, sparseSizeOk := headers[paxGNUSparseSize] sparseRealSize, sparseRealSizeOk := headers[paxGNUSparseRealSize] // Identify which, if any, sparse format applies from which PAX headers are set if majorOk && minorOk { sparseFormat = major + "." + minor } else if sparseNameOk && sparseMapOk { sparseFormat = "0.1" } else if sparseSizeOk { sparseFormat = "0.0" } else { // Not a PAX format GNU sparse file. return nil, nil } // Check for unknown sparse format if sparseFormat != "0.0" && sparseFormat != "0.1" && sparseFormat != "1.0" { return nil, nil } // Update hdr from GNU sparse PAX headers if sparseNameOk { hdr.Name = sparseName } if sparseSizeOk { realSize, err := strconv.ParseInt(sparseSize, 10, 0) if err != nil { return nil, ErrHeader } hdr.Size = realSize } else if sparseRealSizeOk { realSize, err := strconv.ParseInt(sparseRealSize, 10, 0) if err != nil { return nil, ErrHeader } hdr.Size = realSize } // Set up the sparse map, according to the particular sparse format in use var sp []sparseEntry var err error switch sparseFormat { case "0.0", "0.1": sp, err = readGNUSparseMap0x1(headers) case "1.0": sp, err = readGNUSparseMap1x0(tr.curr) } return sp, err } // mergePAX merges well known headers according to PAX standard. // In general headers with the same name as those found // in the header struct overwrite those found in the header // struct with higher precision or longer values. Esp. useful // for name and linkname fields. func mergePAX(hdr *Header, headers map[string]string) (err error) { var id64 int64 for k, v := range headers { switch k { case paxPath: hdr.Name = v case paxLinkpath: hdr.Linkname = v case paxUname: hdr.Uname = v case paxGname: hdr.Gname = v case paxUid: id64, err = strconv.ParseInt(v, 10, 0) hdr.Uid = int(id64) case paxGid: id64, err = strconv.ParseInt(v, 10, 0) hdr.Gid = int(id64) case paxAtime: hdr.AccessTime, err = parsePAXTime(v) case paxMtime: hdr.ModTime, err = parsePAXTime(v) case paxCtime: hdr.ChangeTime, err = parsePAXTime(v) case paxSize: hdr.Size, err = strconv.ParseInt(v, 10, 0) default: if strings.HasPrefix(k, paxXattr) { if hdr.Xattrs == nil { hdr.Xattrs = make(map[string]string) } hdr.Xattrs[k[len(paxXattr):]] = v } } if err != nil { return ErrHeader } } return nil } // parsePAXTime takes a string of the form %d.%d as described in // the PAX specification. func parsePAXTime(t string) (time.Time, error) { buf := []byte(t) pos := bytes.IndexByte(buf, '.') var seconds, nanoseconds int64 var err error if pos == -1 { seconds, err = strconv.ParseInt(t, 10, 0) if err != nil { return time.Time{}, err } } else { seconds, err = strconv.ParseInt(string(buf[:pos]), 10, 0) if err != nil { return time.Time{}, err } nanoBuf := string(buf[pos+1:]) // Pad as needed before converting to a decimal. // For example .030 -> .030000000 -> 30000000 nanoseconds if len(nanoBuf) < maxNanoSecondIntSize { // Right pad nanoBuf += strings.Repeat("0", maxNanoSecondIntSize-len(nanoBuf)) } else if len(nanoBuf) > maxNanoSecondIntSize { // Right truncate nanoBuf = nanoBuf[:maxNanoSecondIntSize] } nanoseconds, err = strconv.ParseInt(nanoBuf, 10, 0) if err != nil { return time.Time{}, err } } ts := time.Unix(seconds, nanoseconds) return ts, nil } // parsePAX parses PAX headers. // If an extended header (type 'x') is invalid, ErrHeader is returned func parsePAX(r io.Reader) (map[string]string, error) { buf, err := ioutil.ReadAll(r) if err != nil { return nil, err } sbuf := string(buf) // For GNU PAX sparse format 0.0 support. // This function transforms the sparse format 0.0 headers into sparse format 0.1 headers. var sparseMap bytes.Buffer headers := make(map[string]string) // Each record is constructed as // "%d %s=%s\n", length, keyword, value for len(sbuf) > 0 { key, value, residual, err := parsePAXRecord(sbuf) if err != nil { return nil, ErrHeader } sbuf = residual keyStr := key if keyStr == paxGNUSparseOffset || keyStr == paxGNUSparseNumBytes { // GNU sparse format 0.0 special key. Write to sparseMap instead of using the headers map. sparseMap.WriteString(value) sparseMap.Write([]byte{','}) } else { // Normal key. Set the value in the headers map. headers[keyStr] = value } } if sparseMap.Len() != 0 { // Add sparse info to headers, chopping off the extra comma sparseMap.Truncate(sparseMap.Len() - 1) headers[paxGNUSparseMap] = sparseMap.String() } return headers, nil } // parsePAXRecord parses the input PAX record string into a key-value pair. // If parsing is successful, it will slice off the currently read record and // return the remainder as r. // // A PAX record is of the following form: // "%d %s=%s\n" % (size, key, value) func parsePAXRecord(s string) (k, v, r string, err error) { // The size field ends at the first space. sp := strings.IndexByte(s, ' ') if sp == -1 { return "", "", s, ErrHeader } // Parse the first token as a decimal integer. n, perr := strconv.ParseInt(s[:sp], 10, 0) // Intentionally parse as native int if perr != nil || n < 5 || int64(len(s)) < n { return "", "", s, ErrHeader } // Extract everything between the space and the final newline. rec, nl, rem := s[sp+1:n-1], s[n-1:n], s[n:] if nl != "\n" { return "", "", s, ErrHeader } // The first equals separates the key from the value. eq := strings.IndexByte(rec, '=') if eq == -1 { return "", "", s, ErrHeader } return rec[:eq], rec[eq+1:], rem, nil } // parseString parses bytes as a NUL-terminated C-style string. // If a NUL byte is not found then the whole slice is returned as a string. func (*parser) parseString(b []byte) string { n := 0 for n < len(b) && b[n] != 0 { n++ } return string(b[0:n]) } // parseNumeric parses the input as being encoded in either base-256 or octal. // This function may return negative numbers. // If parsing fails or an integer overflow occurs, err will be set. func (p *parser) parseNumeric(b []byte) int64 { // Check for base-256 (binary) format first. // If the first bit is set, then all following bits constitute a two's // complement encoded number in big-endian byte order. if len(b) > 0 && b[0]&0x80 != 0 { // Handling negative numbers relies on the following identity: // -a-1 == ^a // // If the number is negative, we use an inversion mask to invert the // data bytes and treat the value as an unsigned number. var inv byte // 0x00 if positive or zero, 0xff if negative if b[0]&0x40 != 0 { inv = 0xff } var x uint64 for i, c := range b { c ^= inv // Inverts c only if inv is 0xff, otherwise does nothing if i == 0 { c &= 0x7f // Ignore signal bit in first byte } if (x >> 56) > 0 { p.err = ErrHeader // Integer overflow return 0 } x = x<<8 | uint64(c) } if (x >> 63) > 0 { p.err = ErrHeader // Integer overflow return 0 } if inv == 0xff { return ^int64(x) } return int64(x) } // Normal case is base-8 (octal) format. return p.parseOctal(b) } func (p *parser) parseOctal(b []byte) int64 { // Because unused fields are filled with NULs, we need // to skip leading NULs. Fields may also be padded with // spaces or NULs. // So we remove leading and trailing NULs and spaces to // be sure. b = bytes.Trim(b, " \x00") if len(b) == 0 { return 0 } x, perr := strconv.ParseUint(p.parseString(b), 8, 64) if perr != nil { p.err = ErrHeader } return int64(x) } // skipUnread skips any unread bytes in the existing file entry, as well as any // alignment padding. It returns io.ErrUnexpectedEOF if any io.EOF is // encountered in the data portion; it is okay to hit io.EOF in the padding. // // Note that this function still works properly even when sparse files are being // used since numBytes returns the bytes remaining in the underlying io.Reader. func (tr *Reader) skipUnread() error { dataSkip := tr.numBytes() // Number of data bytes to skip totalSkip := dataSkip + tr.pad // Total number of bytes to skip tr.curr, tr.pad = nil, 0 // If possible, Seek to the last byte before the end of the data section. // Do this because Seek is often lazy about reporting errors; this will mask // the fact that the tar stream may be truncated. We can rely on the // io.CopyN done shortly afterwards to trigger any IO errors. var seekSkipped int64 // Number of bytes skipped via Seek if sr, ok := tr.r.(io.Seeker); ok && dataSkip > 1 { // Not all io.Seeker can actually Seek. For example, os.Stdin implements // io.Seeker, but calling Seek always returns an error and performs // no action. Thus, we try an innocent seek to the current position // to see if Seek is really supported. pos1, err := sr.Seek(0, io.SeekCurrent) if err == nil { // Seek seems supported, so perform the real Seek. pos2, err := sr.Seek(dataSkip-1, io.SeekCurrent) if err != nil { return err } seekSkipped = pos2 - pos1 } } copySkipped, err := io.CopyN(ioutil.Discard, tr.r, totalSkip-seekSkipped) if err == io.EOF && seekSkipped+copySkipped < dataSkip { err = io.ErrUnexpectedEOF } return err } // readHeader reads the next block header and assumes that the underlying reader // is already aligned to a block boundary. It returns the raw block of the // header in case further processing is required. // // The err will be set to io.EOF only when one of the following occurs: // * Exactly 0 bytes are read and EOF is hit. // * Exactly 1 block of zeros is read and EOF is hit. // * At least 2 blocks of zeros are read. func (tr *Reader) readHeader() (*Header, *block, error) { // Two blocks of zero bytes marks the end of the archive. if _, err := io.ReadFull(tr.r, tr.blk[:]); err != nil { return nil, nil, err // EOF is okay here; exactly 0 bytes read } if bytes.Equal(tr.blk[:], zeroBlock[:]) { if _, err := io.ReadFull(tr.r, tr.blk[:]); err != nil { return nil, nil, err // EOF is okay here; exactly 1 block of zeros read } if bytes.Equal(tr.blk[:], zeroBlock[:]) { return nil, nil, io.EOF // normal EOF; exactly 2 block of zeros read } return nil, nil, ErrHeader // Zero block and then non-zero block } // Verify the header matches a known format. format := tr.blk.GetFormat() if format == formatUnknown { return nil, nil, ErrHeader } var p parser hdr := new(Header) // Unpack the V7 header. v7 := tr.blk.V7() hdr.Name = p.parseString(v7.Name()) hdr.Mode = p.parseNumeric(v7.Mode()) hdr.Uid = int(p.parseNumeric(v7.UID())) hdr.Gid = int(p.parseNumeric(v7.GID())) hdr.Size = p.parseNumeric(v7.Size()) hdr.ModTime = time.Unix(p.parseNumeric(v7.ModTime()), 0) hdr.Typeflag = v7.TypeFlag()[0] hdr.Linkname = p.parseString(v7.LinkName()) // Unpack format specific fields. if format > formatV7 { ustar := tr.blk.USTAR() hdr.Uname = p.parseString(ustar.UserName()) hdr.Gname = p.parseString(ustar.GroupName()) if hdr.Typeflag == TypeChar || hdr.Typeflag == TypeBlock { hdr.Devmajor = p.parseNumeric(ustar.DevMajor()) hdr.Devminor = p.parseNumeric(ustar.DevMinor()) } var prefix string switch format { case formatUSTAR, formatGNU: // TODO(dsnet): Do not use the prefix field for the GNU format! // See golang.org/issues/12594 ustar := tr.blk.USTAR() prefix = p.parseString(ustar.Prefix()) case formatSTAR: star := tr.blk.STAR() prefix = p.parseString(star.Prefix()) hdr.AccessTime = time.Unix(p.parseNumeric(star.AccessTime()), 0) hdr.ChangeTime = time.Unix(p.parseNumeric(star.ChangeTime()), 0) } if len(prefix) > 0 { hdr.Name = prefix + "/" + hdr.Name } } return hdr, &tr.blk, p.err } // readOldGNUSparseMap reads the sparse map as stored in the old GNU sparse format. // The sparse map is stored in the tar header if it's small enough. If it's larger than four entries, // then one or more extension headers are used to store the rest of the sparse map. func (tr *Reader) readOldGNUSparseMap(blk *block) ([]sparseEntry, error) { var p parser var s sparseArray = blk.GNU().Sparse() var sp = make([]sparseEntry, 0, s.MaxEntries()) for i := 0; i < s.MaxEntries(); i++ { offset := p.parseOctal(s.Entry(i).Offset()) numBytes := p.parseOctal(s.Entry(i).NumBytes()) if p.err != nil { return nil, p.err } if offset == 0 && numBytes == 0 { break } sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes}) } for s.IsExtended()[0] > 0 { // There are more entries. Read an extension header and parse its entries. var blk block if _, err := io.ReadFull(tr.r, blk[:]); err != nil { return nil, err } s = blk.Sparse() for i := 0; i < s.MaxEntries(); i++ { offset := p.parseOctal(s.Entry(i).Offset()) numBytes := p.parseOctal(s.Entry(i).NumBytes()) if p.err != nil { return nil, p.err } if offset == 0 && numBytes == 0 { break } sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes}) } } return sp, nil } // readGNUSparseMap1x0 reads the sparse map as stored in GNU's PAX sparse format // version 1.0. The format of the sparse map consists of a series of // newline-terminated numeric fields. The first field is the number of entries // and is always present. Following this are the entries, consisting of two // fields (offset, numBytes). This function must stop reading at the end // boundary of the block containing the last newline. // // Note that the GNU manual says that numeric values should be encoded in octal // format. However, the GNU tar utility itself outputs these values in decimal. // As such, this library treats values as being encoded in decimal. func readGNUSparseMap1x0(r io.Reader) ([]sparseEntry, error) { var cntNewline int64 var buf bytes.Buffer var blk = make([]byte, blockSize) // feedTokens copies data in numBlock chunks from r into buf until there are // at least cnt newlines in buf. It will not read more blocks than needed. var feedTokens = func(cnt int64) error { for cntNewline < cnt { if _, err := io.ReadFull(r, blk); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } return err } buf.Write(blk) for _, c := range blk { if c == '\n' { cntNewline++ } } } return nil } // nextToken gets the next token delimited by a newline. This assumes that // at least one newline exists in the buffer. var nextToken = func() string { cntNewline-- tok, _ := buf.ReadString('\n') return tok[:len(tok)-1] // Cut off newline } // Parse for the number of entries. // Use integer overflow resistant math to check this. if err := feedTokens(1); err != nil { return nil, err } numEntries, err := strconv.ParseInt(nextToken(), 10, 0) // Intentionally parse as native int if err != nil || numEntries < 0 || int(2*numEntries) < int(numEntries) { return nil, ErrHeader } // Parse for all member entries. // numEntries is trusted after this since a potential attacker must have // committed resources proportional to what this library used. if err := feedTokens(2 * numEntries); err != nil { return nil, err } sp := make([]sparseEntry, 0, numEntries) for i := int64(0); i < numEntries; i++ { offset, err := strconv.ParseInt(nextToken(), 10, 64) if err != nil { return nil, ErrHeader } numBytes, err := strconv.ParseInt(nextToken(), 10, 64) if err != nil { return nil, ErrHeader } sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes}) } return sp, nil } // readGNUSparseMap0x1 reads the sparse map as stored in GNU's PAX sparse format // version 0.1. The sparse map is stored in the PAX headers. func readGNUSparseMap0x1(extHdrs map[string]string) ([]sparseEntry, error) { // Get number of entries. // Use integer overflow resistant math to check this. numEntriesStr := extHdrs[paxGNUSparseNumBlocks] numEntries, err := strconv.ParseInt(numEntriesStr, 10, 0) // Intentionally parse as native int if err != nil || numEntries < 0 || int(2*numEntries) < int(numEntries) { return nil, ErrHeader } // There should be two numbers in sparseMap for each entry. sparseMap := strings.Split(extHdrs[paxGNUSparseMap], ",") if int64(len(sparseMap)) != 2*numEntries { return nil, ErrHeader } // Loop through the entries in the sparse map. // numEntries is trusted now. sp := make([]sparseEntry, 0, numEntries) for i := int64(0); i < numEntries; i++ { offset, err := strconv.ParseInt(sparseMap[2*i], 10, 64) if err != nil { return nil, ErrHeader } numBytes, err := strconv.ParseInt(sparseMap[2*i+1], 10, 64) if err != nil { return nil, ErrHeader } sp = append(sp, sparseEntry{offset: offset, numBytes: numBytes}) } return sp, nil } // numBytes returns the number of bytes left to read in the current file's entry // in the tar archive, or 0 if there is no current file. func (tr *Reader) numBytes() int64 { if tr.curr == nil { // No current file, so no bytes return 0 } return tr.curr.numBytes() } // Read reads from the current entry in the tar archive. // It returns 0, io.EOF when it reaches the end of that entry, // until Next is called to advance to the next entry. // // Calling Read on special types like TypeLink, TypeSymLink, TypeChar, // TypeBlock, TypeDir, and TypeFifo returns 0, io.EOF regardless of what // the Header.Size claims. func (tr *Reader) Read(b []byte) (int, error) { if tr.err != nil { return 0, tr.err } if tr.curr == nil { return 0, io.EOF } n, err := tr.curr.Read(b) if err != nil && err != io.EOF { tr.err = err } return n, err } func (rfr *regFileReader) Read(b []byte) (n int, err error) { if rfr.nb == 0 { // file consumed return 0, io.EOF } if int64(len(b)) > rfr.nb { b = b[0:rfr.nb] } n, err = rfr.r.Read(b) rfr.nb -= int64(n) if err == io.EOF && rfr.nb > 0 { err = io.ErrUnexpectedEOF } return } // numBytes returns the number of bytes left to read in the file's data in the tar archive. func (rfr *regFileReader) numBytes() int64 { return rfr.nb } // newSparseFileReader creates a new sparseFileReader, but validates all of the // sparse entries before doing so. func newSparseFileReader(rfr numBytesReader, sp []sparseEntry, total int64) (*sparseFileReader, error) { if total < 0 { return nil, ErrHeader // Total size cannot be negative } // Validate all sparse entries. These are the same checks as performed by // the BSD tar utility. for i, s := range sp { switch { case s.offset < 0 || s.numBytes < 0: return nil, ErrHeader // Negative values are never okay case s.offset > math.MaxInt64-s.numBytes: return nil, ErrHeader // Integer overflow with large length case s.offset+s.numBytes > total: return nil, ErrHeader // Region extends beyond the "real" size case i > 0 && sp[i-1].offset+sp[i-1].numBytes > s.offset: return nil, ErrHeader // Regions can't overlap and must be in order } } return &sparseFileReader{rfr: rfr, sp: sp, total: total}, nil } // readHole reads a sparse hole ending at endOffset. func (sfr *sparseFileReader) readHole(b []byte, endOffset int64) int { n64 := endOffset - sfr.pos if n64 > int64(len(b)) { n64 = int64(len(b)) } n := int(n64) for i := 0; i < n; i++ { b[i] = 0 } sfr.pos += n64 return n } // Read reads the sparse file data in expanded form. func (sfr *sparseFileReader) Read(b []byte) (n int, err error) { // Skip past all empty fragments. for len(sfr.sp) > 0 && sfr.sp[0].numBytes == 0 { sfr.sp = sfr.sp[1:] } // If there are no more fragments, then it is possible that there // is one last sparse hole. if len(sfr.sp) == 0 { // This behavior matches the BSD tar utility. // However, GNU tar stops returning data even if sfr.total is unmet. if sfr.pos < sfr.total { return sfr.readHole(b, sfr.total), nil } return 0, io.EOF } // In front of a data fragment, so read a hole. if sfr.pos < sfr.sp[0].offset { return sfr.readHole(b, sfr.sp[0].offset), nil } // In a data fragment, so read from it. // This math is overflow free since we verify that offset and numBytes can // be safely added when creating the sparseFileReader. endPos := sfr.sp[0].offset + sfr.sp[0].numBytes // End offset of fragment bytesLeft := endPos - sfr.pos // Bytes left in fragment if int64(len(b)) > bytesLeft { b = b[:bytesLeft] } n, err = sfr.rfr.Read(b) sfr.pos += int64(n) if err == io.EOF { if sfr.pos < endPos { err = io.ErrUnexpectedEOF // There was supposed to be more data } else if sfr.pos < sfr.total { err = nil // There is still an implicit sparse hole at the end } } if sfr.pos == endPos { sfr.sp = sfr.sp[1:] // We are done with this fragment, so pop it } return n, err } // numBytes returns the number of bytes left to read in the sparse file's // sparse-encoded data in the tar archive. func (sfr *sparseFileReader) numBytes() int64 { return sfr.rfr.numBytes() }