// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fmt import ( "bytes"; "strconv"; ) const ( nByte = 64; nPows10 = 160; ldigits = "0123456789abcdef"; udigits = "0123456789ABCDEF"; ) var padZeroBytes = make([]byte, nByte) var padSpaceBytes = make([]byte, nByte) var newline = []byte{'\n'} func init() { for i := 0; i < nByte; i++ { padZeroBytes[i] = '0'; padSpaceBytes[i] = ' '; } } /* Fmt is the raw formatter used by Printf etc. Not meant for normal use. It prints into a bytes.Buffer that must be set up externally. See print.go for a more palatable interface. */ type Fmt struct { intbuf [nByte]byte; buf *bytes.Buffer; wid int; widPresent bool; prec int; precPresent bool; // flags minus bool; plus bool; sharp bool; space bool; zero bool; } func (f *Fmt) ClearFlags() { f.wid = 0; f.widPresent = false; f.prec = 0; f.precPresent = false; f.minus = false; f.plus = false; f.sharp = false; f.space = false; f.zero = false; } func (f *Fmt) Init(buf *bytes.Buffer) { f.buf = buf; f.ClearFlags(); } func (f *Fmt) Reset() { f.ClearFlags() } // Wp sets the width and precision for formatting the next item. func (f *Fmt) Wp(w, p int) { f.widPresent = true; f.wid = w; f.precPresent = true; f.prec = p; } // P sets the precision for formatting the next item. func (f *Fmt) P(p int) { f.precPresent = true; f.prec = p; } // W sets the width for formatting the next item. func (f *Fmt) W(x int) { f.widPresent = true; f.wid = x; } // Compute left and right padding widths (only one will be non-zero). func (f *Fmt) computePadding(width int) (padding []byte, leftWidth, rightWidth int) { left := !f.minus; w := f.wid; if w < 0 { left = false; w = -w; } w -= width; if w > 0 { if left && f.zero { return padZeroBytes, w, 0 } if left { return padSpaceBytes, w, 0 } else { // can't be zero padding on the right return padSpaceBytes, 0, w } } return; } // Generate n bytes of padding. func (f *Fmt) writePadding(n int, padding []byte) { for n > 0 { m := n; if m > nByte { m = nByte } f.buf.Write(padding[0:m]); n -= m; } } // Append b to f.buf, padded on left (w > 0) or right (w < 0 or f.minus) func (f *Fmt) padBytes(b []byte) { var padding []byte; var left, right int; if f.widPresent && f.wid != 0 { padding, left, right = f.computePadding(len(b)) } if left > 0 { f.writePadding(left, padding) } f.buf.Write(b); if right > 0 { f.writePadding(right, padding) } } // append s to buf, padded on left (w > 0) or right (w < 0 or f.minus) func (f *Fmt) pad(s string) { var padding []byte; var left, right int; if f.widPresent && f.wid != 0 { padding, left, right = f.computePadding(len(s)) } if left > 0 { f.writePadding(left, padding) } f.buf.WriteString(s); if right > 0 { f.writePadding(right, padding) } } // format val into buf, ending at buf[i]. (printing is easier right-to-left; // that's why the bidi languages are right-to-left except for numbers. wait, // never mind.) val is known to be unsigned. we could make things maybe // marginally faster by splitting the 32-bit case out into a separate function // but it's not worth the duplication, so val has 64 bits. func putint(buf []byte, base, val uint64, digits string) int { i := len(buf) - 1; for val >= base { buf[i] = digits[val%base]; i--; val /= base; } buf[i] = digits[val]; return i - 1; } // Fmt_boolean formats a boolean. func (f *Fmt) Fmt_boolean(v bool) { if v { f.pad("true") } else { f.pad("false") } f.ClearFlags(); } // integer; interprets prec but not wid. func (f *Fmt) integer(a int64, base uint, is_signed bool, digits string) []byte { var buf []byte = &f.intbuf; negative := is_signed && a < 0; if negative { a = -a } // two ways to ask for extra leading zero digits: %.3d or %03d. // apparently the first cancels the second. prec := 0; if f.precPresent { prec = f.prec; f.zero = false; } else if f.zero && f.widPresent && !f.minus && f.wid > 0 { prec = f.wid; if negative || f.plus || f.space { prec-- // leave room for sign } } i := putint(buf, uint64(base), uint64(a), digits); for i > 0 && prec > (nByte-1-i) { buf[i] = '0'; i--; } if f.sharp { switch base { case 8: if buf[i+1] != '0' { buf[i] = '0'; i--; } case 16: buf[i] = 'x' + digits[10] - 'a'; i--; buf[i] = '0'; i--; } } if negative { buf[i] = '-'; i--; } else if f.plus { buf[i] = '+'; i--; } else if f.space { buf[i] = ' '; i--; } return buf[i+1 : nByte]; } // Fmt_d64 formats an int64 in decimal. func (f *Fmt) Fmt_d64(v int64) { f.padBytes(f.integer(v, 10, true, ldigits)); f.ClearFlags(); } // Fmt_d32 formats an int32 in decimal. func (f *Fmt) Fmt_d32(v int32) { f.Fmt_d64(int64(v)) } // Fmt_d formats an int in decimal. func (f *Fmt) Fmt_d(v int) { f.Fmt_d64(int64(v)) } // Fmt_ud64 formats a uint64 in decimal. func (f *Fmt) Fmt_ud64(v uint64) *Fmt { f.padBytes(f.integer(int64(v), 10, false, ldigits)); f.ClearFlags(); return f; } // Fmt_ud32 formats a uint32 in decimal. func (f *Fmt) Fmt_ud32(v uint32) { f.Fmt_ud64(uint64(v)) } // Fmt_ud formats a uint in decimal. func (f *Fmt) Fmt_ud(v uint) { f.Fmt_ud64(uint64(v)) } // Fmt_x64 formats an int64 in hexadecimal. func (f *Fmt) Fmt_x64(v int64) { f.padBytes(f.integer(v, 16, true, ldigits)); f.ClearFlags(); } // Fmt_x32 formats an int32 in hexadecimal. func (f *Fmt) Fmt_x32(v int32) { f.Fmt_x64(int64(v)) } // Fmt_x formats an int in hexadecimal. func (f *Fmt) Fmt_x(v int) { f.Fmt_x64(int64(v)) } // Fmt_ux64 formats a uint64 in hexadecimal. func (f *Fmt) Fmt_ux64(v uint64) { f.padBytes(f.integer(int64(v), 16, false, ldigits)); f.ClearFlags(); } // Fmt_ux32 formats a uint32 in hexadecimal. func (f *Fmt) Fmt_ux32(v uint32) { f.Fmt_ux64(uint64(v)) } // Fmt_ux formats a uint in hexadecimal. func (f *Fmt) Fmt_ux(v uint) { f.Fmt_ux64(uint64(v)) } // Fmt_X64 formats an int64 in upper case hexadecimal. func (f *Fmt) Fmt_X64(v int64) { f.padBytes(f.integer(v, 16, true, udigits)); f.ClearFlags(); } // Fmt_X32 formats an int32 in upper case hexadecimal. func (f *Fmt) Fmt_X32(v int32) { f.Fmt_X64(int64(v)) } // Fmt_X formats an int in upper case hexadecimal. func (f *Fmt) Fmt_X(v int) { f.Fmt_X64(int64(v)) } // Fmt_uX64 formats a uint64 in upper case hexadecimal. func (f *Fmt) Fmt_uX64(v uint64) { f.padBytes(f.integer(int64(v), 16, false, udigits)); f.ClearFlags(); } // Fmt_uX32 formats a uint32 in upper case hexadecimal. func (f *Fmt) Fmt_uX32(v uint32) { f.Fmt_uX64(uint64(v)) } // Fmt_uX formats a uint in upper case hexadecimal. func (f *Fmt) Fmt_uX(v uint) { f.Fmt_uX64(uint64(v)) } // Fmt_o64 formats an int64 in octal. func (f *Fmt) Fmt_o64(v int64) { f.padBytes(f.integer(v, 8, true, ldigits)); f.ClearFlags(); } // Fmt_o32 formats an int32 in octal. func (f *Fmt) Fmt_o32(v int32) { f.Fmt_o64(int64(v)) } // Fmt_o formats an int in octal. func (f *Fmt) Fmt_o(v int) { f.Fmt_o64(int64(v)) } // Fmt_uo64 formats a uint64 in octal. func (f *Fmt) Fmt_uo64(v uint64) { f.padBytes(f.integer(int64(v), 8, false, ldigits)); f.ClearFlags(); } // Fmt_uo32 formats a uint32 in octal. func (f *Fmt) Fmt_uo32(v uint32) { f.Fmt_uo64(uint64(v)) } // Fmt_uo formats a uint in octal. func (f *Fmt) Fmt_uo(v uint) { f.Fmt_uo64(uint64(v)) } // Fmt_b64 formats a uint64 in binary. func (f *Fmt) Fmt_b64(v uint64) { f.padBytes(f.integer(int64(v), 2, false, ldigits)); f.ClearFlags(); } // Fmt_b32 formats a uint32 in binary. func (f *Fmt) Fmt_b32(v uint32) { f.Fmt_b64(uint64(v)) } // Fmt_b formats a uint in binary. func (f *Fmt) Fmt_b(v uint) { f.Fmt_b64(uint64(v)) } // Fmt_c formats a Unicode character. func (f *Fmt) Fmt_c(v int) { f.pad(string(v)); f.ClearFlags(); } // Fmt_s formats a string. func (f *Fmt) Fmt_s(s string) { if f.precPresent { if f.prec < len(s) { s = s[0:f.prec] } } f.pad(s); f.ClearFlags(); } // Fmt_sx formats a string as a hexadecimal encoding of its bytes. func (f *Fmt) Fmt_sx(s string) { t := ""; for i := 0; i < len(s); i++ { if i > 0 && f.space { t += " " } v := s[i]; t += string(ldigits[v>>4]); t += string(ldigits[v&0xF]); } f.pad(t); f.ClearFlags(); } // Fmt_sX formats a string as an uppercase hexadecimal encoding of its bytes. func (f *Fmt) Fmt_sX(s string) { t := ""; for i := 0; i < len(s); i++ { v := s[i]; t += string(udigits[v>>4]); t += string(udigits[v&0xF]); } f.pad(t); f.ClearFlags(); } // Fmt_q formats a string as a double-quoted, escaped Go string constant. func (f *Fmt) Fmt_q(s string) { var quoted string; if f.sharp && strconv.CanBackquote(s) { quoted = "`" + s + "`" } else { quoted = strconv.Quote(s) } f.pad(quoted); f.ClearFlags(); } // floating-point func doPrec(f *Fmt, def int) int { if f.precPresent { return f.prec } return def; } func fmtString(f *Fmt, s string) { f.pad(s); f.ClearFlags(); } // Add a plus sign or space to the string if missing and required. func (f *Fmt) plusSpace(s string) { if s[0] != '-' { if f.plus { s = "+" + s } else if f.space { s = " " + s } } fmtString(f, s); } // Fmt_e64 formats a float64 in the form -1.23e+12. func (f *Fmt) Fmt_e64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'e', doPrec(f, 6))) } // Fmt_E64 formats a float64 in the form -1.23E+12. func (f *Fmt) Fmt_E64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'E', doPrec(f, 6))) } // Fmt_f64 formats a float64 in the form -1.23. func (f *Fmt) Fmt_f64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'f', doPrec(f, 6))) } // Fmt_g64 formats a float64 in the 'f' or 'e' form according to size. func (f *Fmt) Fmt_g64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'g', doPrec(f, -1))) } // Fmt_g64 formats a float64 in the 'f' or 'E' form according to size. func (f *Fmt) Fmt_G64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'G', doPrec(f, -1))) } // Fmt_fb64 formats a float64 in the form -123p3 (exponent is power of 2). func (f *Fmt) Fmt_fb64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'b', 0)) } // float32 // cannot defer to float64 versions // because it will get rounding wrong in corner cases. // Fmt_e32 formats a float32 in the form -1.23e+12. func (f *Fmt) Fmt_e32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'e', doPrec(f, 6))) } // Fmt_E32 formats a float32 in the form -1.23E+12. func (f *Fmt) Fmt_E32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'E', doPrec(f, 6))) } // Fmt_f32 formats a float32 in the form -1.23. func (f *Fmt) Fmt_f32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'f', doPrec(f, 6))) } // Fmt_g32 formats a float32 in the 'f' or 'e' form according to size. func (f *Fmt) Fmt_g32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'g', doPrec(f, -1))) } // Fmt_G32 formats a float32 in the 'f' or 'E' form according to size. func (f *Fmt) Fmt_G32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'G', doPrec(f, -1))) } // Fmt_fb32 formats a float32 in the form -123p3 (exponent is power of 2). func (f *Fmt) Fmt_fb32(v float32) { fmtString(f, strconv.Ftoa32(v, 'b', 0)) } // float func (x *Fmt) f(a float) { if strconv.FloatSize == 32 { x.Fmt_f32(float32(a)) } else { x.Fmt_f64(float64(a)) } } func (x *Fmt) e(a float) { if strconv.FloatSize == 32 { x.Fmt_e32(float32(a)) } else { x.Fmt_e64(float64(a)) } } func (x *Fmt) g(a float) { if strconv.FloatSize == 32 { x.Fmt_g32(float32(a)) } else { x.Fmt_g64(float64(a)) } } func (x *Fmt) fb(a float) { if strconv.FloatSize == 32 { x.Fmt_fb32(float32(a)) } else { x.Fmt_fb64(float64(a)) } }