package ssa // This file implements the BUILD phase of SSA construction. // // SSA construction has two phases, CREATE and BUILD. In the CREATE phase // (create.go), all packages are constructed and type-checked and // definitions of all package members are created, method-sets are // computed, and wrapper methods are synthesized. The create phase // proceeds in topological order over the import dependency graph, // initiated by client calls to Program.CreatePackage. // // In the BUILD phase (builder.go), the builder traverses the AST of // each Go source function and generates SSA instructions for the // function body. // Within each package, building proceeds in a topological order over // the intra-package symbol reference graph, whose roots are the set // of package-level declarations in lexical order. The BUILD phases // for distinct packages are independent and are executed in parallel. // // The builder's and Program's indices (maps) are populated and // mutated during the CREATE phase, but during the BUILD phase they // remain constant. The sole exception is Prog.methodSets and its // related maps, which are protected by a dedicated mutex. import ( "fmt" "go/ast" "go/token" "os" "sync" "sync/atomic" "code.google.com/p/go.tools/go/exact" "code.google.com/p/go.tools/go/types" ) type opaqueType struct { types.Type name string } func (t *opaqueType) String() string { return t.name } var ( varOk = types.NewVar(token.NoPos, nil, "ok", tBool) varIndex = types.NewVar(token.NoPos, nil, "index", tInt) // Type constants. tBool = types.Typ[types.Bool] tByte = types.Typ[types.Byte] tInt = types.Typ[types.Int] tInvalid = types.Typ[types.Invalid] tUntypedNil = types.Typ[types.UntypedNil] tRangeIter = &opaqueType{nil, "iter"} // the type of all "range" iterators tEface = new(types.Interface) // SSA Value constants. vZero = intConst(0) vOne = intConst(1) vTrue = NewConst(exact.MakeBool(true), tBool) vFalse = NewConst(exact.MakeBool(false), tBool) ) // builder holds state associated with the package currently being built. // Its methods contain all the logic for AST-to-SSA conversion. type builder struct { nTo1Vars map[*ast.ValueSpec]bool // set of n:1 ValueSpecs already built } // lookup returns the package-level *Function or *Global for the named // object obj, building it if necessary. // // Intra-package references are edges in the initialization dependency // graph. If the result v is a Function or Global belonging to // 'from', the package on whose behalf this lookup occurs, then lookup // emits initialization code into from.init if not already done. // func (b *builder) lookup(from *Package, obj types.Object) Value { v := from.Prog.packages[obj.Pkg()].values[obj] switch v := v.(type) { case *Function: if from == v.Pkg { b.buildFunction(v) } case *Global: if from == v.Pkg { b.buildGlobal(v, obj) } } return v } // cond emits to fn code to evaluate boolean condition e and jump // to t or f depending on its value, performing various simplifications. // // Postcondition: fn.currentBlock is nil. // func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) { switch e := e.(type) { case *ast.ParenExpr: b.cond(fn, e.X, t, f) return case *ast.BinaryExpr: switch e.Op { case token.LAND: ltrue := fn.newBasicBlock("cond.true") b.cond(fn, e.X, ltrue, f) fn.currentBlock = ltrue b.cond(fn, e.Y, t, f) return case token.LOR: lfalse := fn.newBasicBlock("cond.false") b.cond(fn, e.X, t, lfalse) fn.currentBlock = lfalse b.cond(fn, e.Y, t, f) return } case *ast.UnaryExpr: if e.Op == token.NOT { b.cond(fn, e.X, f, t) return } } switch cond := b.expr(fn, e).(type) { case *Const: // Dispatch constant conditions statically. if exact.BoolVal(cond.Value) { emitJump(fn, t) } else { emitJump(fn, f) } default: emitIf(fn, cond, t, f) } } // logicalBinop emits code to fn to evaluate e, a &&- or // ||-expression whose reified boolean value is wanted. // The value is returned. // func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value { rhs := fn.newBasicBlock("binop.rhs") done := fn.newBasicBlock("binop.done") var short Value // value of the short-circuit path switch e.Op { case token.LAND: b.cond(fn, e.X, rhs, done) short = vFalse case token.LOR: b.cond(fn, e.X, done, rhs) short = vTrue } // Is rhs unreachable? if rhs.Preds == nil { // Simplify false&&y to false, true||y to true. fn.currentBlock = done return short } // Is done unreachable? if done.Preds == nil { // Simplify true&&y (or false||y) to y. fn.currentBlock = rhs return b.expr(fn, e.Y) } // All edges from e.X to done carry the short-circuit value. var edges []Value for _ = range done.Preds { edges = append(edges, short) } // The edge from e.Y to done carries the value of e.Y. fn.currentBlock = rhs edges = append(edges, b.expr(fn, e.Y)) emitJump(fn, done) fn.currentBlock = done phi := &Phi{Edges: edges, Comment: e.Op.String()} phi.pos = e.OpPos phi.typ = phi.Edges[0].Type() return done.emit(phi) } // exprN lowers a multi-result expression e to SSA form, emitting code // to fn and returning a single Value whose type is a *types.Tuple. // The caller must access the components via Extract. // // Multi-result expressions include CallExprs in a multi-value // assignment or return statement, and "value,ok" uses of // TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op // is token.ARROW). // func (b *builder) exprN(fn *Function, e ast.Expr) Value { var typ types.Type var tuple Value switch e := e.(type) { case *ast.ParenExpr: return b.exprN(fn, e.X) case *ast.CallExpr: // Currently, no built-in function nor type conversion // has multiple results, so we can avoid some of the // cases for single-valued CallExpr. var c Call b.setCall(fn, e, &c.Call) c.typ = fn.Pkg.typeOf(e) return fn.emit(&c) case *ast.IndexExpr: mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map) typ = mapt.Elem() lookup := &Lookup{ X: b.expr(fn, e.X), Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()), CommaOk: true, } lookup.setPos(e.Lbrack) tuple = fn.emit(lookup) case *ast.TypeAssertExpr: return emitTypeTest(fn, b.expr(fn, e.X), fn.Pkg.typeOf(e), e.Lparen) case *ast.UnaryExpr: // must be receive <- typ = fn.Pkg.typeOf(e.X).Underlying().(*types.Chan).Elem() unop := &UnOp{ Op: token.ARROW, X: b.expr(fn, e.X), CommaOk: true, } unop.setPos(e.OpPos) tuple = fn.emit(unop) default: panic(fmt.Sprintf("unexpected exprN: %T", e)) } // The typechecker sets the type of the expression to just the // asserted type in the "value, ok" form, not to *types.Tuple // (though it includes the valueOk operand in its error messages). tuple.(interface { setType(types.Type) }).setType(types.NewTuple( types.NewVar(token.NoPos, nil, "value", typ), varOk, )) return tuple } // builtin emits to fn SSA instructions to implement a call to the // built-in function called name with the specified arguments // and return type. It returns the value defined by the result. // // The result is nil if no special handling was required; in this case // the caller should treat this like an ordinary library function // call. // func (b *builder) builtin(fn *Function, name string, args []ast.Expr, typ types.Type, pos token.Pos) Value { switch name { case "make": switch typ.Underlying().(type) { case *types.Slice: n := b.expr(fn, args[1]) m := n if len(args) == 3 { m = b.expr(fn, args[2]) } v := &MakeSlice{ Len: n, Cap: m, } v.setPos(pos) v.setType(typ) return fn.emit(v) case *types.Map: var res Value if len(args) == 2 { res = b.expr(fn, args[1]) } v := &MakeMap{Reserve: res} v.setPos(pos) v.setType(typ) return fn.emit(v) case *types.Chan: var sz Value = vZero if len(args) == 2 { sz = b.expr(fn, args[1]) } v := &MakeChan{Size: sz} v.setPos(pos) v.setType(typ) return fn.emit(v) } case "new": return emitNew(fn, deref(typ), pos) case "len", "cap": // Special case: len or cap of an array or *array is // based on the type, not the value which may be nil. // We must still evaluate the value, though. (If it // was side-effect free, the whole call would have // been constant-folded.) t := deref(fn.Pkg.typeOf(args[0])).Underlying() if at, ok := t.(*types.Array); ok { b.expr(fn, args[0]) // for effects only return intConst(at.Len()) } // Otherwise treat as normal. case "panic": fn.emit(&Panic{ X: emitConv(fn, b.expr(fn, args[0]), tEface), pos: pos, }) fn.currentBlock = fn.newBasicBlock("unreachable") return vFalse // any non-nil Value will do } return nil // treat all others as a regular function call } // addr lowers a single-result addressable expression e to SSA form, // emitting code to fn and returning the location (an lvalue) defined // by the expression. // // If escaping is true, addr marks the base variable of the // addressable expression e as being a potentially escaping pointer // value. For example, in this code: // // a := A{ // b: [1]B{B{c: 1}} // } // return &a.b[0].c // // the application of & causes a.b[0].c to have its address taken, // which means that ultimately the local variable a must be // heap-allocated. This is a simple but very conservative escape // analysis. // // Operations forming potentially escaping pointers include: // - &x, including when implicit in method call or composite literals. // - a[:] iff a is an array (not *array) // - references to variables in lexically enclosing functions. // func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue { switch e := e.(type) { case *ast.Ident: if isBlankIdent(e) { return blank{} } obj := fn.Pkg.objectOf(e) v := b.lookup(fn.Pkg, obj) // var (address) if v == nil { v = fn.lookup(obj, escaping) } return &address{addr: v, id: e, object: obj} case *ast.CompositeLit: t := deref(fn.Pkg.typeOf(e)) var v Value if escaping { v = emitNew(fn, t, e.Lbrace) } else { v = fn.addLocal(t, e.Lbrace) } b.compLit(fn, v, e, t) // initialize in place return &address{addr: v} case *ast.ParenExpr: return b.addr(fn, e.X, escaping) case *ast.SelectorExpr: switch sel := fn.Pkg.info.Selections[e]; sel.Kind() { case types.PackageObj: obj := sel.Obj() if v := b.lookup(fn.Pkg, obj); v != nil { return &address{addr: v} } panic("undefined package-qualified name: " + obj.Name()) case types.FieldVal: wantAddr := true v := b.receiver(fn, e.X, wantAddr, escaping, sel) last := len(sel.Index()) - 1 return &address{ addr: emitFieldSelection(fn, v, sel.Index()[last], true, e.Sel.Pos()), id: e.Sel, object: sel.Obj(), } } case *ast.IndexExpr: var x Value var et types.Type switch t := fn.Pkg.typeOf(e.X).Underlying().(type) { case *types.Array: x = b.addr(fn, e.X, escaping).address(fn) et = types.NewPointer(t.Elem()) case *types.Pointer: // *array x = b.expr(fn, e.X) et = types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()) case *types.Slice: x = b.expr(fn, e.X) et = types.NewPointer(t.Elem()) case *types.Map: return &element{ m: b.expr(fn, e.X), k: emitConv(fn, b.expr(fn, e.Index), t.Key()), t: t.Elem(), } default: panic("unexpected container type in IndexExpr: " + t.String()) } v := &IndexAddr{ X: x, Index: emitConv(fn, b.expr(fn, e.Index), tInt), } v.setType(et) return &address{addr: fn.emit(v)} case *ast.StarExpr: return &address{addr: b.expr(fn, e.X), starPos: e.Star} } panic(fmt.Sprintf("unexpected address expression: %T", e)) } // exprInPlace emits to fn code to initialize the lvalue loc with the // value of expression e. // // This is equivalent to loc.store(fn, b.expr(fn, e)) but may // generate better code in some cases, e.g. for composite literals // in an addressable location. // func (b *builder) exprInPlace(fn *Function, loc lvalue, e ast.Expr) { if _, ok := loc.(*address); ok { if e, ok := e.(*ast.CompositeLit); ok { typ := loc.typ() switch typ.Underlying().(type) { case *types.Pointer: // implicit & -- possibly escaping ptr := b.addr(fn, e, true).address(fn) loc.store(fn, ptr) // copy address return case *types.Interface: // e.g. var x interface{} = T{...} // Can't in-place initialize an interface value. // Fall back to copying. default: b.compLit(fn, loc.address(fn), e, typ) // in place return } } } loc.store(fn, b.expr(fn, e)) // copy value } // expr lowers a single-result expression e to SSA form, emitting code // to fn and returning the Value defined by the expression. // func (b *builder) expr(fn *Function, e ast.Expr) Value { if v := fn.Pkg.info.ValueOf(e); v != nil { c := NewConst(v, fn.Pkg.typeOf(e)) if id, ok := unparen(e).(*ast.Ident); ok { emitDebugRef(fn, id, c) } return c } switch e := e.(type) { case *ast.BasicLit: panic("non-constant BasicLit") // unreachable case *ast.FuncLit: posn := fn.Prog.Fset.Position(e.Type.Func) fn2 := &Function{ name: fmt.Sprintf("func@%d.%d", posn.Line, posn.Column), Signature: fn.Pkg.typeOf(e.Type).Underlying().(*types.Signature), pos: e.Type.Func, Enclosing: fn, Pkg: fn.Pkg, Prog: fn.Prog, syntax: &funcSyntax{ functype: e.Type, body: e.Body, }, } fn.AnonFuncs = append(fn.AnonFuncs, fn2) b.buildFunction(fn2) if fn2.FreeVars == nil { return fn2 } v := &MakeClosure{Fn: fn2} v.setType(fn.Pkg.typeOf(e)) for _, fv := range fn2.FreeVars { v.Bindings = append(v.Bindings, fv.outer) fv.outer = nil } return fn.emit(v) case *ast.ParenExpr: return b.expr(fn, e.X) case *ast.TypeAssertExpr: // single-result form only return emitTypeAssert(fn, b.expr(fn, e.X), fn.Pkg.typeOf(e), e.Lparen) case *ast.CallExpr: typ := fn.Pkg.typeOf(e) if fn.Pkg.info.IsType(e.Fun) { // Explicit type conversion, e.g. string(x) or big.Int(x) x := b.expr(fn, e.Args[0]) y := emitConv(fn, x, typ) if y != x { switch y := y.(type) { case *Convert: y.pos = e.Lparen case *ChangeType: y.pos = e.Lparen case *MakeInterface: y.pos = e.Lparen } } return y } // Call to "intrinsic" built-ins, e.g. new, make, panic. if id, ok := e.Fun.(*ast.Ident); ok { obj := fn.Pkg.objectOf(id) if _, ok := fn.Prog.builtins[obj]; ok { if v := b.builtin(fn, id.Name, e.Args, typ, e.Lparen); v != nil { return v } } } // Regular function call. var v Call b.setCall(fn, e, &v.Call) v.setType(typ) return fn.emit(&v) case *ast.UnaryExpr: switch e.Op { case token.AND: // &X --- potentially escaping. return b.addr(fn, e.X, true).address(fn) case token.ADD: return b.expr(fn, e.X) case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^ v := &UnOp{ Op: e.Op, X: b.expr(fn, e.X), } v.setPos(e.OpPos) v.setType(fn.Pkg.typeOf(e)) return fn.emit(v) default: panic(e.Op) } case *ast.BinaryExpr: switch e.Op { case token.LAND, token.LOR: return b.logicalBinop(fn, e) case token.SHL, token.SHR: fallthrough case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), fn.Pkg.typeOf(e), e.OpPos) case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ: return emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos) default: panic("illegal op in BinaryExpr: " + e.Op.String()) } case *ast.SliceExpr: var low, high Value var x Value switch fn.Pkg.typeOf(e.X).Underlying().(type) { case *types.Array: // Potentially escaping. x = b.addr(fn, e.X, true).address(fn) case *types.Basic, *types.Slice, *types.Pointer: // *array x = b.expr(fn, e.X) default: unreachable() } if e.High != nil { high = b.expr(fn, e.High) } if e.Low != nil { low = b.expr(fn, e.Low) } v := &Slice{ X: x, Low: low, High: high, } v.setPos(e.Lbrack) v.setType(fn.Pkg.typeOf(e)) return fn.emit(v) case *ast.Ident: obj := fn.Pkg.objectOf(e) // Universal built-in? if obj.Pkg() == nil { return fn.Prog.builtins[obj] } // Package-level func or var? if v := b.lookup(fn.Pkg, obj); v != nil { if _, ok := obj.(*types.Var); ok { return emitLoad(fn, v) // var (address) } return v // (func) } // Local var. v := emitLoad(fn, fn.lookup(obj, false)) // var (address) emitDebugRef(fn, e, v) return v case *ast.SelectorExpr: switch sel := fn.Pkg.info.Selections[e]; sel.Kind() { case types.PackageObj: return b.expr(fn, e.Sel) case types.MethodExpr: // (*T).f or T.f, the method f from the method-set of type T. // For declared methods, a simple conversion will suffice. return emitConv(fn, fn.Prog.LookupMethod(sel), fn.Pkg.typeOf(e)) case types.MethodVal: // e.f where e is an expression and f is a method. // The result is a bound method closure. obj := sel.Obj().(*types.Func) wantAddr := isPointer(recvType(obj)) escaping := true v := b.receiver(fn, e.X, wantAddr, escaping, sel) c := &MakeClosure{ Fn: boundMethodWrapper(fn.Prog, obj), Bindings: []Value{v}, } c.setPos(e.Sel.Pos()) c.setType(fn.Pkg.typeOf(e)) return fn.emit(c) case types.FieldVal: indices := sel.Index() last := len(indices) - 1 v := b.expr(fn, e.X) v = emitImplicitSelections(fn, v, indices[:last]) v = emitFieldSelection(fn, v, indices[last], false, e.Sel.Pos()) emitDebugRef(fn, e.Sel, v) return v } panic("unexpected expression-relative selector") case *ast.IndexExpr: switch t := fn.Pkg.typeOf(e.X).Underlying().(type) { case *types.Array: // Non-addressable array (in a register). v := &Index{ X: b.expr(fn, e.X), Index: emitConv(fn, b.expr(fn, e.Index), tInt), } v.setType(t.Elem()) return fn.emit(v) case *types.Map: // Maps are not addressable. mapt := fn.Pkg.typeOf(e.X).Underlying().(*types.Map) v := &Lookup{ X: b.expr(fn, e.X), Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()), } v.setPos(e.Lbrack) v.setType(mapt.Elem()) return fn.emit(v) case *types.Basic: // => string // Strings are not addressable. v := &Lookup{ X: b.expr(fn, e.X), Index: b.expr(fn, e.Index), } v.setPos(e.Lbrack) v.setType(tByte) return fn.emit(v) case *types.Slice, *types.Pointer: // *array // Addressable slice/array; use IndexAddr and Load. return b.addr(fn, e, false).load(fn) default: panic("unexpected container type in IndexExpr: " + t.String()) } case *ast.CompositeLit, *ast.StarExpr: // Addressable types (lvalues) return b.addr(fn, e, false).load(fn) } panic(fmt.Sprintf("unexpected expr: %T", e)) } // stmtList emits to fn code for all statements in list. func (b *builder) stmtList(fn *Function, list []ast.Stmt) { for _, s := range list { b.stmt(fn, s) } } // receiver emits to fn code for expression e in the "receiver" // position of selection e.f (where f may be a field or a method) and // returns the effective receiver after applying the implicit field // selections of sel. // // wantAddr requests that the result is an an address. If // !sel.Indirect(), this may require that e be build in addr() mode; it // must thus be addressable. // // escaping is defined as per builder.addr(). // func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *types.Selection) Value { var v Value if wantAddr && !sel.Indirect() && !isPointer(fn.Pkg.typeOf(e)) { v = b.addr(fn, e, escaping).address(fn) } else { v = b.expr(fn, e) } last := len(sel.Index()) - 1 v = emitImplicitSelections(fn, v, sel.Index()[:last]) if !wantAddr && isPointer(v.Type()) { v = emitLoad(fn, v) } return v } // setCallFunc populates the function parts of a CallCommon structure // (Func, Method, Recv, Args[0]) based on the kind of invocation // occurring in e. // func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) { c.pos = e.Lparen c.HasEllipsis = e.Ellipsis != 0 // Is this a method call? if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok { switch sel := fn.Pkg.info.Selections[selector]; sel.Kind() { case types.PackageObj: // e.g. fmt.Println case types.MethodExpr: // T.f() or (*T).f(): a statically dispatched // call to the method f in the method-set of T // or *T. T may be an interface. // e.Fun would evaluate to a concrete method, // interface wrapper function, or promotion // wrapper. // // For now, we evaluate it in the usual way. // TODO(adonovan): opt: inline expr() here, to // make the call static and to avoid // generation of wrappers. It's somewhat // tricky as it may consume the first actual // parameter if the call is "invoke" mode. // // Examples: // type T struct{}; func (T) f() {} // "call" mode // type T interface { f() } // "invoke" mode // // type S struct{ T } // // var s S // S.f(s) // (*S).f(&s) // // Suggested approach: // - consume the first actual parameter expression // and build it with b.expr(). // - apply implicit field selections. // - use MethodVal logic to populate fields of c. case types.FieldVal: // A field access, not a method call. case types.MethodVal: obj := sel.Obj().(*types.Func) wantAddr := isPointer(recvType(obj)) escaping := true v := b.receiver(fn, selector.X, wantAddr, escaping, sel) if _, ok := deref(v.Type()).Underlying().(*types.Interface); ok { // Invoke-mode call. c.Value = v c.Method = obj } else { // "Call"-mode call. c.Value = fn.Prog.declaredFunc(obj) c.Args = append(c.Args, v) } return default: panic(fmt.Sprintf("illegal (%s).%s() call; X:%T", fn.Pkg.typeOf(selector.X), selector.Sel.Name, selector.X)) } } // Evaluate the function operand in the usual way. c.Value = b.expr(fn, e.Fun) } // emitCallArgs emits to f code for the actual parameters of call e to // a (possibly built-in) function of effective type sig. // The argument values are appended to args, which is then returned. // func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value { // f(x, y, z...): pass slice z straight through. if e.Ellipsis != 0 { for i, arg := range e.Args { v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type()) args = append(args, v) } return args } offset := len(args) // 1 if call has receiver, 0 otherwise // Evaluate actual parameter expressions. // // If this is a chained call of the form f(g()) where g has // multiple return values (MRV), they are flattened out into // args; a suffix of them may end up in a varargs slice. for _, arg := range e.Args { v := b.expr(fn, arg) if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain for i, n := 0, ttuple.Len(); i < n; i++ { args = append(args, emitExtract(fn, v, i, ttuple.At(i).Type())) } } else { args = append(args, v) } } // Actual->formal assignability conversions for normal parameters. np := sig.Params().Len() // number of normal parameters if sig.IsVariadic() { np-- } for i := 0; i < np; i++ { args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type()) } // Actual->formal assignability conversions for variadic parameter, // and construction of slice. if sig.IsVariadic() { varargs := args[offset+np:] st := sig.Params().At(np).Type().(*types.Slice) vt := st.Elem() if len(varargs) == 0 { args = append(args, nilConst(st)) } else { // Replace a suffix of args with a slice containing it. at := types.NewArray(vt, int64(len(varargs))) // Don't set pos for implicit Allocs. a := emitNew(fn, at, token.NoPos) for i, arg := range varargs { iaddr := &IndexAddr{ X: a, Index: intConst(int64(i)), } iaddr.setType(types.NewPointer(vt)) fn.emit(iaddr) emitStore(fn, iaddr, arg) } s := &Slice{X: a} s.setType(st) args[offset+np] = fn.emit(s) args = args[:offset+np+1] } } return args } // setCall emits to fn code to evaluate all the parameters of a function // call e, and populates *c with those values. // func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) { // First deal with the f(...) part and optional receiver. b.setCallFunc(fn, e, c) // Then append the other actual parameters. sig, _ := fn.Pkg.typeOf(e.Fun).Underlying().(*types.Signature) if sig == nil { sig = fn.Pkg.info.BuiltinCallSignature(e) } c.Args = b.emitCallArgs(fn, sig, e, c.Args) } // assignOp emits to fn code to perform loc += incr or loc -= incr. func (b *builder) assignOp(fn *Function, loc lvalue, incr Value, op token.Token) { oldv := loc.load(fn) loc.store(fn, emitArith(fn, op, oldv, emitConv(fn, incr, oldv.Type()), loc.typ(), token.NoPos)) } // buildGlobal emits code to the g.Pkg.init function for the variable // definition(s) of g. Effects occur out of lexical order; see // explanation at globalValueSpec. // Precondition: g == g.Prog.value(obj) // func (b *builder) buildGlobal(g *Global, obj types.Object) { spec := g.spec if spec == nil { return // already built (or in progress) } b.globalValueSpec(g.Pkg.init, spec, g, obj) } // globalValueSpec emits to init code to define one or all of the vars // in the package-level ValueSpec spec. // // It implements the build phase for a ValueSpec, ensuring that all // vars are initialized if not already visited by buildGlobal during // the reference graph traversal. // // This function may be called in two modes: // A) with g and obj non-nil, to initialize just a single global. // This occurs during the reference graph traversal. // B) with g and obj nil, to initialize all globals in the same ValueSpec. // This occurs during the left-to-right traversal over the ast.File. // // Precondition: g == g.Prog.value(obj) // // Package-level var initialization order is quite subtle. // The side effects of: // var a, b = f(), g() // are not observed left-to-right if b is referenced before a in the // reference graph traversal. So, we track which Globals have been // initialized by setting Global.spec=nil. // // Blank identifiers make things more complex since they don't have // associated types.Objects or ssa.Globals yet we must still ensure // that their corresponding side effects are observed at the right // moment. Consider: // var a, _, b = f(), g(), h() // Here, the relative ordering of the call to g() is unspecified but // it must occur exactly once, during mode B. So globalValueSpec for // blanks must special-case n:n assigments and just evaluate the RHS // g() for effect. // // In a n:1 assignment: // var a, _, b = f() // a reference to either a or b causes both globals to be initialized // at the same time. Furthermore, no further work is required to // ensure that the effects of the blank assignment occur. We must // keep track of which n:1 specs have been evaluated, independent of // which Globals are on the LHS (possibly none, if all are blank). // // See also localValueSpec. // func (b *builder) globalValueSpec(init *Function, spec *ast.ValueSpec, g *Global, obj types.Object) { switch { case len(spec.Values) == len(spec.Names): // e.g. var x, y = 0, 1 // 1:1 assignment. // Only the first time for a given GLOBAL has any effect. for i, id := range spec.Names { var lval lvalue = blank{} if g != nil { // Mode A: initialize only a single global, g if isBlankIdent(id) || init.Pkg.objectOf(id) != obj { continue } g.spec = nil lval = &address{addr: g} } else { // Mode B: initialize all globals. if !isBlankIdent(id) { g2 := init.Pkg.values[init.Pkg.objectOf(id)].(*Global) if g2.spec == nil { continue // already done } g2.spec = nil lval = &address{addr: g2} } } if init.Prog.mode&LogSource != 0 { fmt.Fprintln(os.Stderr, "build global", id.Name) } b.exprInPlace(init, lval, spec.Values[i]) if g != nil { break } } case len(spec.Values) == 0: // e.g. var x, y int // Globals are implicitly zero-initialized. default: // e.g. var x, _, y = f() // n:1 assignment. // Only the first time for a given SPEC has any effect. if !b.nTo1Vars[spec] { b.nTo1Vars[spec] = true if init.Prog.mode&LogSource != 0 { defer logStack("build globals %s", spec.Names)() } tuple := b.exprN(init, spec.Values[0]) result := tuple.Type().(*types.Tuple) for i, id := range spec.Names { if !isBlankIdent(id) { g := init.Pkg.values[init.Pkg.objectOf(id)].(*Global) g.spec = nil // just an optimization emitStore(init, g, emitExtract(init, tuple, i, result.At(i).Type())) } } } } } // localValueSpec emits to fn code to define all of the vars in the // function-local ValueSpec, spec. // // See also globalValueSpec: the two routines are similar but local // ValueSpecs are much simpler since they are encountered once only, // in their entirety, in lexical order. // func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) { switch { case len(spec.Values) == len(spec.Names): // e.g. var x, y = 0, 1 // 1:1 assignment for i, id := range spec.Names { if !isBlankIdent(id) { fn.addLocalForIdent(id) } lval := b.addr(fn, id, false) // non-escaping b.exprInPlace(fn, lval, spec.Values[i]) } case len(spec.Values) == 0: // e.g. var x, y int // Locals are implicitly zero-initialized. for _, id := range spec.Names { if !isBlankIdent(id) { lhs := fn.addLocalForIdent(id) if fn.debugInfo() { emitDebugRef(fn, id, emitLoad(fn, lhs)) } } } default: // e.g. var x, y = pos() tuple := b.exprN(fn, spec.Values[0]) result := tuple.Type().(*types.Tuple) for i, id := range spec.Names { if !isBlankIdent(id) { fn.addLocalForIdent(id) lhs := b.addr(fn, id, false) // non-escaping lhs.store(fn, emitExtract(fn, tuple, i, result.At(i).Type())) } } } } // assignStmt emits code to fn for a parallel assignment of rhss to lhss. // isDef is true if this is a short variable declaration (:=). // // Note the similarity with localValueSpec. // func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) { // Side effects of all LHSs and RHSs must occur in left-to-right order. var lvals []lvalue for _, lhs := range lhss { var lval lvalue = blank{} if !isBlankIdent(lhs) { if isDef { // Local may be "redeclared" in the same // scope, so don't blindly create anew. obj := fn.Pkg.objectOf(lhs.(*ast.Ident)) if _, ok := fn.objects[obj]; !ok { fn.addNamedLocal(obj) } } lval = b.addr(fn, lhs, false) // non-escaping } lvals = append(lvals, lval) } if len(lhss) == len(rhss) { // e.g. x, y = f(), g() if len(lhss) == 1 { // x = type{...} // Optimization: in-place construction // of composite literals. b.exprInPlace(fn, lvals[0], rhss[0]) } else { // Parallel assignment. All reads must occur // before all updates, precluding exprInPlace. // TODO(adonovan): opt: is it sound to // perform exprInPlace if !isDef? var rvals []Value for _, rval := range rhss { rvals = append(rvals, b.expr(fn, rval)) } for i, lval := range lvals { lval.store(fn, rvals[i]) } } } else { // e.g. x, y = pos() tuple := b.exprN(fn, rhss[0]) result := tuple.Type().(*types.Tuple) for i, lval := range lvals { lval.store(fn, emitExtract(fn, tuple, i, result.At(i).Type())) } } } // arrayLen returns the length of the array whose composite literal elements are elts. func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 { var max int64 = -1 var i int64 = -1 for _, e := range elts { if kv, ok := e.(*ast.KeyValueExpr); ok { i = b.expr(fn, kv.Key).(*Const).Int64() } else { i++ } if i > max { max = i } } return max + 1 } // compLit emits to fn code to initialize a composite literal e at // address addr with type typ, typically allocated by Alloc. // Nested composite literals are recursively initialized in place // where possible. // func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, typ types.Type) { // TODO(adonovan): document how and why typ ever differs from // fn.Pkg.typeOf(e). switch t := typ.Underlying().(type) { case *types.Struct: for i, e := range e.Elts { fieldIndex := i if kv, ok := e.(*ast.KeyValueExpr); ok { fname := kv.Key.(*ast.Ident).Name for i, n := 0, t.NumFields(); i < n; i++ { sf := t.Field(i) if sf.Name() == fname { fieldIndex = i e = kv.Value break } } } sf := t.Field(fieldIndex) faddr := &FieldAddr{ X: addr, Field: fieldIndex, } faddr.setType(types.NewPointer(sf.Type())) fn.emit(faddr) b.exprInPlace(fn, &address{addr: faddr}, e) } case *types.Array, *types.Slice: var at *types.Array var array Value switch t := t.(type) { case *types.Slice: at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts)) array = emitNew(fn, at, e.Lbrace) case *types.Array: at = t array = addr } var idx *Const for _, e := range e.Elts { if kv, ok := e.(*ast.KeyValueExpr); ok { idx = b.expr(fn, kv.Key).(*Const) e = kv.Value } else { var idxval int64 if idx != nil { idxval = idx.Int64() + 1 } idx = intConst(idxval) } iaddr := &IndexAddr{ X: array, Index: idx, } iaddr.setType(types.NewPointer(at.Elem())) fn.emit(iaddr) b.exprInPlace(fn, &address{addr: iaddr}, e) } if t != at { // slice s := &Slice{X: array} s.setPos(e.Lbrace) s.setType(t) emitStore(fn, addr, fn.emit(s)) } case *types.Map: m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))} m.setPos(e.Lbrace) m.setType(typ) emitStore(fn, addr, fn.emit(m)) for _, e := range e.Elts { e := e.(*ast.KeyValueExpr) up := &MapUpdate{ Map: m, Key: emitConv(fn, b.expr(fn, e.Key), t.Key()), Value: emitConv(fn, b.expr(fn, e.Value), t.Elem()), pos: e.Colon, } fn.emit(up) } case *types.Pointer: // Pointers can only occur in the recursive case; we // strip them off in addr() before calling compLit // again, so that we allocate space for a T not a *T. panic("compLit(fn, addr, e, *types.Pointer") default: panic("unexpected CompositeLit type: " + t.String()) } } // switchStmt emits to fn code for the switch statement s, optionally // labelled by label. // func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) { // We treat SwitchStmt like a sequential if-else chain. // More efficient strategies (e.g. multiway dispatch) // are possible if all cases are free of side effects. if s.Init != nil { b.stmt(fn, s.Init) } var tag Value = vTrue if s.Tag != nil { tag = b.expr(fn, s.Tag) } done := fn.newBasicBlock("switch.done") if label != nil { label._break = done } // We pull the default case (if present) down to the end. // But each fallthrough label must point to the next // body block in source order, so we preallocate a // body block (fallthru) for the next case. // Unfortunately this makes for a confusing block order. var dfltBody *[]ast.Stmt var dfltFallthrough *BasicBlock var fallthru, dfltBlock *BasicBlock ncases := len(s.Body.List) for i, clause := range s.Body.List { body := fallthru if body == nil { body = fn.newBasicBlock("switch.body") // first case only } // Preallocate body block for the next case. fallthru = done if i+1 < ncases { fallthru = fn.newBasicBlock("switch.body") } cc := clause.(*ast.CaseClause) if cc.List == nil { // Default case. dfltBody = &cc.Body dfltFallthrough = fallthru dfltBlock = body continue } var nextCond *BasicBlock for _, cond := range cc.List { nextCond = fn.newBasicBlock("switch.next") // TODO(adonovan): opt: when tag==vTrue, we'd // get better much code if we use b.cond(cond) // instead of BinOp(EQL, tag, b.expr(cond)) // followed by If. Don't forget conversions // though. cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), token.NoPos) emitIf(fn, cond, body, nextCond) fn.currentBlock = nextCond } fn.currentBlock = body fn.targets = &targets{ tail: fn.targets, _break: done, _fallthrough: fallthru, } b.stmtList(fn, cc.Body) fn.targets = fn.targets.tail emitJump(fn, done) fn.currentBlock = nextCond } if dfltBlock != nil { emitJump(fn, dfltBlock) fn.currentBlock = dfltBlock fn.targets = &targets{ tail: fn.targets, _break: done, _fallthrough: dfltFallthrough, } b.stmtList(fn, *dfltBody) fn.targets = fn.targets.tail } emitJump(fn, done) fn.currentBlock = done } // typeSwitchStmt emits to fn code for the type switch statement s, optionally // labelled by label. // func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) { // We treat TypeSwitchStmt like a sequential if-else // chain. More efficient strategies (e.g. multiway // dispatch) are possible. // Typeswitch lowering: // // var x X // switch y := x.(type) { // case T1, T2: S1 // >1 (y := x) // case nil: SN // nil (y := x) // default: SD // 0 types (y := x) // case T3: S3 // 1 type (y := x.(T3)) // } // // ...s.Init... // x := eval x // .caseT1: // t1, ok1 := typeswitch,ok x // if ok1 then goto S1 else goto .caseT2 // .caseT2: // t2, ok2 := typeswitch,ok x // if ok2 then goto S1 else goto .caseNil // .S1: // y := x // ...S1... // goto done // .caseNil: // if t2, ok2 := typeswitch,ok x // if x == nil then goto SN else goto .caseT3 // .SN: // y := x // ...SN... // goto done // .caseT3: // t3, ok3 := typeswitch,ok x // if ok3 then goto S3 else goto default // .S3: // y := t3 // ...S3... // goto done // .default: // y := x // ...SD... // goto done // .done: if s.Init != nil { b.stmt(fn, s.Init) } var x Value switch ass := s.Assign.(type) { case *ast.ExprStmt: // x.(type) x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X) case *ast.AssignStmt: // y := x.(type) x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X) } done := fn.newBasicBlock("typeswitch.done") if label != nil { label._break = done } var default_ *ast.CaseClause for _, clause := range s.Body.List { cc := clause.(*ast.CaseClause) if cc.List == nil { default_ = cc continue } body := fn.newBasicBlock("typeswitch.body") var next *BasicBlock var casetype types.Type var ti Value // ti, ok := typeassert,ok x for _, cond := range cc.List { next = fn.newBasicBlock("typeswitch.next") casetype = fn.Pkg.typeOf(cond) var condv Value if casetype == tUntypedNil { condv = emitCompare(fn, token.EQL, x, nilConst(x.Type()), token.NoPos) ti = x } else { yok := emitTypeTest(fn, x, casetype, token.NoPos) ti = emitExtract(fn, yok, 0, casetype) condv = emitExtract(fn, yok, 1, tBool) } emitIf(fn, condv, body, next) fn.currentBlock = next } if len(cc.List) != 1 { ti = x } fn.currentBlock = body b.typeCaseBody(fn, cc, ti, done) fn.currentBlock = next } if default_ != nil { b.typeCaseBody(fn, default_, x, done) } else { emitJump(fn, done) } fn.currentBlock = done } func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) { if obj := fn.Pkg.info.TypeCaseVar(cc); obj != nil { // In a switch y := x.(type), each case clause // implicitly declares a distinct object y. // In a single-type case, y has that type. // In multi-type cases, 'case nil' and default, // y has the same type as the interface operand. emitStore(fn, fn.addNamedLocal(obj), x) } fn.targets = &targets{ tail: fn.targets, _break: done, } b.stmtList(fn, cc.Body) fn.targets = fn.targets.tail emitJump(fn, done) } // selectStmt emits to fn code for the select statement s, optionally // labelled by label. // func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) { // A blocking select of a single case degenerates to a // simple send or receive. // TODO(adonovan): opt: is this optimization worth its weight? if len(s.Body.List) == 1 { clause := s.Body.List[0].(*ast.CommClause) if clause.Comm != nil { b.stmt(fn, clause.Comm) done := fn.newBasicBlock("select.done") if label != nil { label._break = done } fn.targets = &targets{ tail: fn.targets, _break: done, } b.stmtList(fn, clause.Body) fn.targets = fn.targets.tail emitJump(fn, done) fn.currentBlock = done return } } // First evaluate all channels in all cases, and find // the directions of each state. var states []SelectState blocking := true for _, clause := range s.Body.List { switch comm := clause.(*ast.CommClause).Comm.(type) { case nil: // default case blocking = false case *ast.SendStmt: // ch<- i ch := b.expr(fn, comm.Chan) states = append(states, SelectState{ Dir: ast.SEND, Chan: ch, Send: emitConv(fn, b.expr(fn, comm.Value), ch.Type().Underlying().(*types.Chan).Elem()), }) case *ast.AssignStmt: // x := <-ch states = append(states, SelectState{ Dir: ast.RECV, Chan: b.expr(fn, unparen(comm.Rhs[0]).(*ast.UnaryExpr).X), }) case *ast.ExprStmt: // <-ch states = append(states, SelectState{ Dir: ast.RECV, Chan: b.expr(fn, unparen(comm.X).(*ast.UnaryExpr).X), }) } } // We dispatch on the (fair) result of Select using a // sequential if-else chain, in effect: // // idx, recvOk, r0...r_n-1 := select(...) // if idx == 0 { // receive on channel 0 (first receive => r0) // x, ok := r0, recvOk // ...state0... // } else if v == 1 { // send on channel 1 // ...state1... // } else { // ...default... // } sel := &Select{ States: states, Blocking: blocking, } sel.setPos(s.Select) var vars []*types.Var vars = append(vars, varIndex, varOk) for _, st := range states { if st.Dir == ast.RECV { tElem := st.Chan.Type().Underlying().(*types.Chan).Elem() vars = append(vars, types.NewVar(token.NoPos, nil, "", tElem)) } } sel.setType(types.NewTuple(vars...)) fn.emit(sel) idx := emitExtract(fn, sel, 0, tInt) done := fn.newBasicBlock("select.done") if label != nil { label._break = done } var defaultBody *[]ast.Stmt state := 0 r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV for _, cc := range s.Body.List { clause := cc.(*ast.CommClause) if clause.Comm == nil { defaultBody = &clause.Body continue } body := fn.newBasicBlock("select.body") next := fn.newBasicBlock("select.next") emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next) fn.currentBlock = body fn.targets = &targets{ tail: fn.targets, _break: done, } switch comm := clause.Comm.(type) { case *ast.ExprStmt: // <-ch r++ case *ast.AssignStmt: // x := <-states[state].Chan if comm.Tok == token.DEFINE { fn.addLocalForIdent(comm.Lhs[0].(*ast.Ident)) } x := b.addr(fn, comm.Lhs[0], false) // non-escaping x.store(fn, emitExtract(fn, sel, r, vars[r].Type())) if len(comm.Lhs) == 2 { // x, ok := ... if comm.Tok == token.DEFINE { fn.addLocalForIdent(comm.Lhs[1].(*ast.Ident)) } ok := b.addr(fn, comm.Lhs[1], false) // non-escaping ok.store(fn, emitExtract(fn, sel, 1, deref(ok.typ()))) } r++ } b.stmtList(fn, clause.Body) fn.targets = fn.targets.tail emitJump(fn, done) fn.currentBlock = next state++ } if defaultBody != nil { fn.targets = &targets{ tail: fn.targets, _break: done, } b.stmtList(fn, *defaultBody) fn.targets = fn.targets.tail } emitJump(fn, done) fn.currentBlock = done } // forStmt emits to fn code for the for statement s, optionally // labelled by label. // func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) { // ...init... // jump loop // loop: // if cond goto body else done // body: // ...body... // jump post // post: (target of continue) // ...post... // jump loop // done: (target of break) if s.Init != nil { b.stmt(fn, s.Init) } body := fn.newBasicBlock("for.body") done := fn.newBasicBlock("for.done") // target of 'break' loop := body // target of back-edge if s.Cond != nil { loop = fn.newBasicBlock("for.loop") } cont := loop // target of 'continue' if s.Post != nil { cont = fn.newBasicBlock("for.post") } if label != nil { label._break = done label._continue = cont } emitJump(fn, loop) fn.currentBlock = loop if loop != body { b.cond(fn, s.Cond, body, done) fn.currentBlock = body } fn.targets = &targets{ tail: fn.targets, _break: done, _continue: cont, } b.stmt(fn, s.Body) fn.targets = fn.targets.tail emitJump(fn, cont) if s.Post != nil { fn.currentBlock = cont b.stmt(fn, s.Post) emitJump(fn, loop) // back-edge } fn.currentBlock = done } // rangeIndexed emits to fn the header for an integer indexed loop // over array, *array or slice value x. // The v result is defined only if tv is non-nil. // func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type) (k, v Value, loop, done *BasicBlock) { // // length = len(x) // index = -1 // loop: (target of continue) // index++ // if index < length goto body else done // body: // k = index // v = x[index] // ...body... // jump loop // done: (target of break) // Determine number of iterations. var length Value if arr, ok := deref(x.Type()).Underlying().(*types.Array); ok { // For array or *array, the number of iterations is // known statically thanks to the type. We avoid a // data dependence upon x, permitting later dead-code // elimination if x is pure, static unrolling, etc. // Ranging over a nil *array may have >0 iterations. length = intConst(arr.Len()) } else { // length = len(x). var c Call c.Call.Value = fn.Prog.builtins[types.Universe.Lookup("len")] c.Call.Args = []Value{x} c.setType(tInt) length = fn.emit(&c) } index := fn.addLocal(tInt, token.NoPos) emitStore(fn, index, intConst(-1)) loop = fn.newBasicBlock("rangeindex.loop") emitJump(fn, loop) fn.currentBlock = loop incr := &BinOp{ Op: token.ADD, X: emitLoad(fn, index), Y: vOne, } incr.setType(tInt) emitStore(fn, index, fn.emit(incr)) body := fn.newBasicBlock("rangeindex.body") done = fn.newBasicBlock("rangeindex.done") emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done) fn.currentBlock = body k = emitLoad(fn, index) if tv != nil { switch t := x.Type().Underlying().(type) { case *types.Array: instr := &Index{ X: x, Index: k, } instr.setType(t.Elem()) v = fn.emit(instr) case *types.Pointer: // *array instr := &IndexAddr{ X: x, Index: k, } instr.setType(types.NewPointer(t.Elem().(*types.Array).Elem())) v = emitLoad(fn, fn.emit(instr)) case *types.Slice: instr := &IndexAddr{ X: x, Index: k, } instr.setType(types.NewPointer(t.Elem())) v = emitLoad(fn, fn.emit(instr)) default: panic("rangeIndexed x:" + t.String()) } } return } // rangeIter emits to fn the header for a loop using // Range/Next/Extract to iterate over map or string value x. // tk and tv are the types of the key/value results k and v, or nil // if the respective component is not wanted. // func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) { // // it = range x // loop: (target of continue) // okv = next it (ok, key, value) // ok = extract okv #0 // if ok goto body else done // body: // k = extract okv #1 // v = extract okv #2 // ...body... // jump loop // done: (target of break) // if tk == nil { tk = tInvalid } if tv == nil { tv = tInvalid } rng := &Range{X: x} rng.setPos(pos) rng.setType(tRangeIter) it := fn.emit(rng) loop = fn.newBasicBlock("rangeiter.loop") emitJump(fn, loop) fn.currentBlock = loop _, isString := x.Type().Underlying().(*types.Basic) okv := &Next{ Iter: it, IsString: isString, } okv.setType(types.NewTuple( varOk, types.NewVar(token.NoPos, nil, "k", tk), types.NewVar(token.NoPos, nil, "v", tv), )) fn.emit(okv) body := fn.newBasicBlock("rangeiter.body") done = fn.newBasicBlock("rangeiter.done") emitIf(fn, emitExtract(fn, okv, 0, tBool), body, done) fn.currentBlock = body if tk != tInvalid { k = emitExtract(fn, okv, 1, tk) } if tv != tInvalid { v = emitExtract(fn, okv, 2, tv) } return } // rangeChan emits to fn the header for a loop that receives from // channel x until it fails. // tk is the channel's element type, or nil if the k result is // not wanted // func (b *builder) rangeChan(fn *Function, x Value, tk types.Type) (k Value, loop, done *BasicBlock) { // // loop: (target of continue) // ko = <-x (key, ok) // ok = extract ko #1 // if ok goto body else done // body: // k = extract ko #0 // ... // goto loop // done: (target of break) loop = fn.newBasicBlock("rangechan.loop") emitJump(fn, loop) fn.currentBlock = loop recv := &UnOp{ Op: token.ARROW, X: x, CommaOk: true, } recv.setType(types.NewTuple( types.NewVar(token.NoPos, nil, "k", tk), varOk, )) ko := fn.emit(recv) body := fn.newBasicBlock("rangechan.body") done = fn.newBasicBlock("rangechan.done") emitIf(fn, emitExtract(fn, ko, 1, tBool), body, done) fn.currentBlock = body if tk != nil { k = emitExtract(fn, ko, 0, tk) } return } // rangeStmt emits to fn code for the range statement s, optionally // labelled by label. // func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) { var tk, tv types.Type if !isBlankIdent(s.Key) { tk = fn.Pkg.typeOf(s.Key) } if s.Value != nil && !isBlankIdent(s.Value) { tv = fn.Pkg.typeOf(s.Value) } // If iteration variables are defined (:=), this // occurs once outside the loop. // // Unlike a short variable declaration, a RangeStmt // using := never redeclares an existing variable; it // always creates a new one. if s.Tok == token.DEFINE { if tk != nil { fn.addLocalForIdent(s.Key.(*ast.Ident)) } if tv != nil { fn.addLocalForIdent(s.Value.(*ast.Ident)) } } x := b.expr(fn, s.X) var k, v Value var loop, done *BasicBlock switch rt := x.Type().Underlying().(type) { case *types.Slice, *types.Array, *types.Pointer: // *array k, v, loop, done = b.rangeIndexed(fn, x, tv) case *types.Chan: k, loop, done = b.rangeChan(fn, x, tk) case *types.Map, *types.Basic: // string k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For) default: panic("Cannot range over: " + rt.String()) } // Evaluate both LHS expressions before we update either. var kl, vl lvalue if tk != nil { kl = b.addr(fn, s.Key, false) // non-escaping } if tv != nil { vl = b.addr(fn, s.Value, false) // non-escaping } if tk != nil { kl.store(fn, k) } if tv != nil { vl.store(fn, v) } if label != nil { label._break = done label._continue = loop } fn.targets = &targets{ tail: fn.targets, _break: done, _continue: loop, } b.stmt(fn, s.Body) fn.targets = fn.targets.tail emitJump(fn, loop) // back-edge fn.currentBlock = done } // stmt lowers statement s to SSA form, emitting code to fn. func (b *builder) stmt(fn *Function, _s ast.Stmt) { // The label of the current statement. If non-nil, its _goto // target is always set; its _break and _continue are set only // within the body of switch/typeswitch/select/for/range. // It is effectively an additional default-nil parameter of stmt(). var label *lblock start: switch s := _s.(type) { case *ast.EmptyStmt: // ignore. (Usually removed by gofmt.) case *ast.DeclStmt: // Con, Var or Typ d := s.Decl.(*ast.GenDecl) if d.Tok == token.VAR { for _, spec := range d.Specs { if vs, ok := spec.(*ast.ValueSpec); ok { b.localValueSpec(fn, vs) } } } case *ast.LabeledStmt: label = fn.labelledBlock(s.Label) emitJump(fn, label._goto) fn.currentBlock = label._goto _s = s.Stmt goto start // effectively: tailcall stmt(fn, s.Stmt, label) case *ast.ExprStmt: b.expr(fn, s.X) case *ast.SendStmt: fn.emit(&Send{ Chan: b.expr(fn, s.Chan), X: emitConv(fn, b.expr(fn, s.Value), fn.Pkg.typeOf(s.Chan).Underlying().(*types.Chan).Elem()), pos: s.Arrow, }) case *ast.IncDecStmt: op := token.ADD if s.Tok == token.DEC { op = token.SUB } b.assignOp(fn, b.addr(fn, s.X, false), vOne, op) case *ast.AssignStmt: switch s.Tok { case token.ASSIGN, token.DEFINE: b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE) default: // +=, etc. op := s.Tok + token.ADD - token.ADD_ASSIGN b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op) } case *ast.GoStmt: // The "intrinsics" new/make/len/cap are forbidden here. // panic is treated like an ordinary function call. var v Go b.setCall(fn, s.Call, &v.Call) fn.emit(&v) case *ast.DeferStmt: // The "intrinsics" new/make/len/cap are forbidden here. // panic is treated like an ordinary function call. var v Defer b.setCall(fn, s.Call, &v.Call) fn.emit(&v) case *ast.ReturnStmt: if fn == fn.Pkg.init { // A "return" within an init block is treated // like a "goto" to the next init block. We // use the outermost BREAK target for this purpose. var block *BasicBlock for t := fn.targets; t != nil; t = t.tail { if t._break != nil { block = t._break } } // Run function calls deferred in this init // block when explicitly returning from it. fn.emit(new(RunDefers)) emitJump(fn, block) fn.currentBlock = fn.newBasicBlock("unreachable") return } var results []Value if len(s.Results) == 1 && fn.Signature.Results().Len() > 1 { // Return of one expression in a multi-valued function. tuple := b.exprN(fn, s.Results[0]) ttuple := tuple.Type().(*types.Tuple) for i, n := 0, ttuple.Len(); i < n; i++ { results = append(results, emitConv(fn, emitExtract(fn, tuple, i, ttuple.At(i).Type()), fn.Signature.Results().At(i).Type())) } } else { // 1:1 return, or no-arg return in non-void function. for i, r := range s.Results { v := emitConv(fn, b.expr(fn, r), fn.Signature.Results().At(i).Type()) results = append(results, v) } } if fn.namedResults != nil { // Function has named result parameters (NRPs). // Perform parallel assignment of return operands to NRPs. for i, r := range results { emitStore(fn, fn.namedResults[i], r) } } // Run function calls deferred in this // function when explicitly returning from it. fn.emit(new(RunDefers)) if fn.namedResults != nil { // Reload NRPs to form the result tuple. results = results[:0] for _, r := range fn.namedResults { results = append(results, emitLoad(fn, r)) } } fn.emit(&Ret{Results: results, pos: s.Return}) fn.currentBlock = fn.newBasicBlock("unreachable") case *ast.BranchStmt: var block *BasicBlock switch s.Tok { case token.BREAK: if s.Label != nil { block = fn.labelledBlock(s.Label)._break } else { for t := fn.targets; t != nil && block == nil; t = t.tail { block = t._break } } case token.CONTINUE: if s.Label != nil { block = fn.labelledBlock(s.Label)._continue } else { for t := fn.targets; t != nil && block == nil; t = t.tail { block = t._continue } } case token.FALLTHROUGH: for t := fn.targets; t != nil && block == nil; t = t.tail { block = t._fallthrough } case token.GOTO: block = fn.labelledBlock(s.Label)._goto } emitJump(fn, block) fn.currentBlock = fn.newBasicBlock("unreachable") case *ast.BlockStmt: b.stmtList(fn, s.List) case *ast.IfStmt: if s.Init != nil { b.stmt(fn, s.Init) } then := fn.newBasicBlock("if.then") done := fn.newBasicBlock("if.done") els := done if s.Else != nil { els = fn.newBasicBlock("if.else") } b.cond(fn, s.Cond, then, els) fn.currentBlock = then b.stmt(fn, s.Body) emitJump(fn, done) if s.Else != nil { fn.currentBlock = els b.stmt(fn, s.Else) emitJump(fn, done) } fn.currentBlock = done case *ast.SwitchStmt: b.switchStmt(fn, s, label) case *ast.TypeSwitchStmt: b.typeSwitchStmt(fn, s, label) case *ast.SelectStmt: b.selectStmt(fn, s, label) case *ast.ForStmt: b.forStmt(fn, s, label) case *ast.RangeStmt: b.rangeStmt(fn, s, label) default: panic(fmt.Sprintf("unexpected statement kind: %T", s)) } } // buildFunction builds SSA code for the body of function fn. Idempotent. func (b *builder) buildFunction(fn *Function) { if fn.Blocks != nil { return // building already started } if fn.syntax == nil { return // not a Go source function. (Synthetic, or from object file.) } if fn.syntax.body == nil { // External function. if fn.Params == nil { // This condition ensures we add a non-empty // params list once only, but we may attempt // the degenerate empty case repeatedly. // TODO(adonovan): opt: don't do that. // We set Function.Params even though there is no body // code to reference them. This simplifies clients. if recv := fn.Signature.Recv(); recv != nil { fn.addParamObj(recv) } params := fn.Signature.Params() for i, n := 0, params.Len(); i < n; i++ { fn.addParamObj(params.At(i)) } } return } if fn.Prog.mode&LogSource != 0 { defer logStack("build function %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))() } fn.startBody() fn.createSyntacticParams() b.stmt(fn, fn.syntax.body) if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb.Preds != nil) { // Run function calls deferred in this function when // falling off the end of the body block. fn.emit(new(RunDefers)) fn.emit(new(Ret)) } fn.finishBody() } // buildInit emits to init any initialization code needed for // declaration decl, causing SSA-building of any functions or methods // it references transitively. // func (b *builder) buildInit(init *Function, decl ast.Decl) { switch decl := decl.(type) { case *ast.GenDecl: if decl.Tok == token.VAR { for _, spec := range decl.Specs { b.globalValueSpec(init, spec.(*ast.ValueSpec), nil, nil) } } case *ast.FuncDecl: if decl.Recv == nil && decl.Name.Name == "init" { // init() block if init.Prog.mode&LogSource != 0 { fmt.Fprintln(os.Stderr, "build init block @", init.Prog.Fset.Position(decl.Pos())) } // A return statement within an init block is // treated like a "goto" to the the next init // block, which we stuff in the outermost // break label. next := init.newBasicBlock("init.next") init.targets = &targets{ tail: init.targets, _break: next, } b.stmt(init, decl.Body) // Run function calls deferred in this init // block when falling off the end of the block. init.emit(new(RunDefers)) emitJump(init, next) init.targets = init.targets.tail init.currentBlock = next } } } // buildFuncDecl builds SSA code for the function or method declared // by decl in package pkg. // func (b *builder) buildFuncDecl(pkg *Package, decl *ast.FuncDecl) { id := decl.Name if isBlankIdent(id) { // TODO(gri): workaround for missing object, // see e.g. $GOROOT/test/blank.go:27. return } if decl.Recv == nil && id.Name == "init" { return // init() block: already done in pass 1 } b.buildFunction(pkg.values[pkg.objectOf(id)].(*Function)) } // BuildAll calls Package.Build() for each package in prog. // Building occurs in parallel unless the BuildSerially mode flag was set. // // BuildAll is idempotent and thread-safe. // func (prog *Program) BuildAll() { var wg sync.WaitGroup for _, p := range prog.PackagesByPath { if prog.mode&BuildSerially != 0 { p.Build() } else { wg.Add(1) go func(p *Package) { p.Build() wg.Done() }(p) } } wg.Wait() } // Build builds SSA code for all functions and vars in package p. // // Precondition: CreatePackage must have been called for all of p's // direct imports (and hence its direct imports must have been // error-free). // // Build is idempotent and thread-safe. // func (p *Package) Build() { if !atomic.CompareAndSwapInt32(&p.started, 0, 1) { return // already started } if p.info.Files == nil { p.info = nil return // nothing to do } if p.Prog.mode&LogSource != 0 { defer logStack("build %s", p)() } init := p.init init.startBody() // Make init() skip if package is already initialized. initguard := p.Var("init$guard") doinit := init.newBasicBlock("init.start") done := init.newBasicBlock("init.done") emitIf(init, emitLoad(init, initguard), done, doinit) init.currentBlock = doinit emitStore(init, initguard, vTrue) // Call the init() function of each package we import. for _, obj := range p.info.Imports() { prereq := p.Prog.packages[obj] if prereq == nil { panic(fmt.Sprintf("Package(%q).Build(): unsatisified import: Program.CreatePackage(%q) was not called", p.Object.Path(), obj.Path())) } var v Call v.Call.Value = prereq.init v.Call.pos = init.pos v.setType(types.NewTuple()) init.emit(&v) } b := &builder{ nTo1Vars: make(map[*ast.ValueSpec]bool), } // Pass 1: visit the package's var decls and init funcs in // source order, causing init() code to be generated in // topological order. We visit package-level vars // transitively through functions and methods, building them // as we go. for _, file := range p.info.Files { for _, decl := range file.Decls { b.buildInit(init, decl) } } // Finish up init(). emitJump(init, done) init.currentBlock = done init.emit(new(RunDefers)) init.emit(new(Ret)) init.finishBody() // Pass 2: build all remaining package-level functions and // methods in source order, including unreachable/blank ones. for _, file := range p.info.Files { for _, decl := range file.Decls { if decl, ok := decl.(*ast.FuncDecl); ok { b.buildFuncDecl(p, decl) } } } p.info = nil // We no longer need ASTs or go/types deductions. } // Only valid during p's create and build phases. func (p *Package) objectOf(id *ast.Ident) types.Object { if o := p.info.ObjectOf(id); o != nil { return o } panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s", id.Name, p.Prog.Fset.Position(id.Pos()))) } // Only valid during p's create and build phases. func (p *Package) typeOf(e ast.Expr) types.Type { return p.info.TypeOf(e) }