// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package eval import ( "bignum"; "go/ast"; "go/scanner"; "go/token"; "log"; "os"; "strconv"; "strings"; ) // An expr is the result of compiling an expression. It stores the // type of the expression and its evaluator function. type expr struct { *exprInfo; t Type; // Evaluate this node as the given type. eval interface{}; // Map index expressions permit special forms of assignment, // for which we need to know the Map and key. evalMapValue func(t *Thread) (Map, interface{}); // Evaluate to the "address of" this value; that is, the // settable Value object. nil for expressions whose address // cannot be taken. evalAddr func(t *Thread) Value; // Execute this expression as a statement. Only expressions // that are valid expression statements should set this. exec func(t *Thread); // If this expression is a type, this is its compiled type. // This is only permitted in the function position of a call // expression. In this case, t should be nil. valType Type; // A short string describing this expression for error // messages. desc string; } // exprInfo stores information needed to compile any expression node. // Each expr also stores its exprInfo so further expressions can be // compiled from it. type exprInfo struct { *compiler; pos token.Position; } func (a *exprInfo) newExpr(t Type, desc string) *expr { return &expr{exprInfo: a, t: t, desc: desc}; } func (a *exprInfo) diag(format string, args ...) { a.diagAt(&a.pos, format, args); } func (a *exprInfo) diagOpType(op token.Token, vt Type) { a.diag("illegal operand type for '%v' operator\n\t%v", op, vt); } func (a *exprInfo) diagOpTypes(op token.Token, lt Type, rt Type) { a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt); } /* * Common expression manipulations */ // a.convertTo(t) converts the value of the analyzed expression a, // which must be a constant, ideal number, to a new analyzed // expression with a constant value of type t. // // TODO(austin) Rename to resolveIdeal or something? func (a *expr) convertTo(t Type) *expr { if !a.t.isIdeal() { log.Crashf("attempted to convert from %v, expected ideal", a.t); } var rat *bignum.Rational; // XXX(Spec) The spec says "It is erroneous". // // It is an error to assign a value with a non-zero fractional // part to an integer, or if the assignment would overflow or // underflow, or in general if the value cannot be represented // by the type of the variable. switch a.t { case IdealFloatType: rat = a.asIdealFloat()(); if t.isInteger() && !rat.IsInt() { a.diag("constant %v truncated to integer", ratToString(rat)); return nil; } case IdealIntType: i := a.asIdealInt()(); rat = bignum.MakeRat(i, bignum.Nat(1)); default: log.Crashf("unexpected ideal type %v", a.t); } // Check bounds if t, ok := t.lit().(BoundedType); ok { if rat.Cmp(t.minVal()) < 0 { a.diag("constant %v underflows %v", ratToString(rat), t); return nil; } if rat.Cmp(t.maxVal()) > 0 { a.diag("constant %v overflows %v", ratToString(rat), t); return nil; } } // Convert rat to type t. res := a.newExpr(t, a.desc); switch t := t.lit().(type) { case *uintType: n, d := rat.Value(); f := n.Quo(bignum.MakeInt(false, d)); v := f.Abs().Value(); res.eval = func(*Thread) uint64 { return v }; case *intType: n, d := rat.Value(); f := n.Quo(bignum.MakeInt(false, d)); v := f.Value(); res.eval = func(*Thread) int64 { return v }; case *idealIntType: n, d := rat.Value(); f := n.Quo(bignum.MakeInt(false, d)); res.eval = func() *bignum.Integer { return f }; case *floatType: n, d := rat.Value(); v := float64(n.Value())/float64(d.Value()); res.eval = func(*Thread) float64 { return v }; case *idealFloatType: res.eval = func() *bignum.Rational { return rat }; default: log.Crashf("cannot convert to type %T", t); } return res; } // convertToInt converts this expression to an integer, if possible, // or produces an error if not. This accepts ideal ints, uints, and // ints. If max is not -1, produces an error if possible if the value // exceeds max. If negErr is not "", produces an error if possible if // the value is negative. func (a *expr) convertToInt(max int64, negErr string, errOp string) *expr { switch _ := a.t.lit().(type) { case *idealIntType: val := a.asIdealInt()(); if negErr != "" && val.IsNeg() { a.diag("negative %s: %s", negErr, val); return nil; } if max != -1 && val.Cmp(bignum.Int(max)) >= 0 { a.diag("index %s exceeds length %d", val, max); return nil; } return a.convertTo(IntType); case *uintType: // Convert to int na := a.newExpr(IntType, a.desc); af := a.asUint(); na.eval = func(t *Thread) int64 { return int64(af(t)); }; return na; case *intType: // Good as is return a; } a.diag("illegal operand type for %s\n\t%v", errOp, a.t); return nil; } // derefArray returns an expression of array type if the given // expression is a *array type. Otherwise, returns the given // expression. func (a *expr) derefArray() *expr { if pt, ok := a.t.lit().(*PtrType); ok { if at, ok := pt.Elem.lit().(*ArrayType); ok { deref := a.compileStarExpr(a); if deref == nil { log.Crashf("failed to dereference *array"); } return deref; } } return a; } /* * Assignments */ // An assignCompiler compiles assignment operations. Anything other // than short declarations should use the compileAssign wrapper. // // There are three valid types of assignment: // 1) T = T // Assigning a single expression with single-valued type to a // single-valued type. // 2) MT = T, T, ... // Assigning multiple expressions with single-valued types to a // multi-valued type. // 3) MT = MT // Assigning a single expression with multi-valued type to a // multi-valued type. type assignCompiler struct { *compiler; pos token.Position; // The RHS expressions. This may include nil's for // expressions that failed to compile. rs []*expr; // The (possibly unary) MultiType of the RHS. rmt *MultiType; // Whether this is an unpack assignment (case 3). isUnpack bool; // Whether map special assignment forms are allowed. allowMap bool; // Whether this is a "r, ok = a[x]" assignment. isMapUnpack bool; // The operation name to use in error messages, such as // "assignment" or "function call". errOp string; // The name to use for positions in error messages, such as // "argument". errPosName string; } // Type check the RHS of an assignment, returning a new assignCompiler // and indicating if the type check succeeded. This always returns an // assignCompiler with rmt set, but if type checking fails, slots in // the MultiType may be nil. If rs contains nil's, type checking will // fail and these expressions given a nil type. func (a *compiler) checkAssign(pos token.Position, rs []*expr, errOp, errPosName string) (*assignCompiler, bool) { c := &assignCompiler{ compiler: a, pos: pos, rs: rs, errOp: errOp, errPosName: errPosName, }; // Is this an unpack? if len(rs) == 1 && rs[0] != nil { if rmt, isUnpack := rs[0].t.(*MultiType); isUnpack { c.rmt = rmt; c.isUnpack = true; return c, true; } } // Create MultiType for RHS and check that all RHS expressions // are single-valued. rts := make([]Type, len(rs)); ok := true; for i, r := range rs { if r == nil { ok = false; continue; } if _, isMT := r.t.(*MultiType); isMT { r.diag("multi-valued expression not allowed in %s", errOp); ok = false; continue; } rts[i] = r.t; } c.rmt = NewMultiType(rts); return c, ok; } func (a *assignCompiler) allowMapForms(nls int) { a.allowMap = true; // Update unpacking info if this is r, ok = a[x] if nls == 2 && len(a.rs) == 1 && a.rs[0].evalMapValue != nil { a.isUnpack = true; a.rmt = NewMultiType([]Type {a.rs[0].t, BoolType}); a.isMapUnpack = true; } } // compile type checks and compiles an assignment operation, returning // a function that expects an l-value and the frame in which to // evaluate the RHS expressions. The l-value must have exactly the // type given by lt. Returns nil if type checking fails. func (a *assignCompiler) compile(b *block, lt Type) (func(Value, *Thread)) { lmt, isMT := lt.(*MultiType); rmt, isUnpack := a.rmt, a.isUnpack; // Create unary MultiType for single LHS if !isMT { lmt = NewMultiType([]Type{lt}); } // Check that the assignment count matches lcount := len(lmt.Elems); rcount := len(rmt.Elems); if lcount != rcount { msg := "not enough"; pos := a.pos; if rcount > lcount { msg = "too many"; if lcount > 0 { pos = a.rs[lcount-1].pos; } } a.diagAt(&pos, "%s %ss for %s\n\t%s\n\t%s", msg, a.errPosName, a.errOp, lt, rmt); return nil; } bad := false; // If this is an unpack, create a temporary to store the // multi-value and replace the RHS with expressions to pull // out values from the temporary. Technically, this is only // necessary when we need to perform assignment conversions. var effect func(*Thread); if isUnpack { // This leaks a slot, but is definitely safe. temp := b.DefineTemp(a.rmt); tempIdx := temp.Index; if tempIdx < 0 { panicln("tempidx", tempIdx); } if a.isMapUnpack { rf := a.rs[0].evalMapValue; vt := a.rmt.Elems[0]; effect = func(t *Thread) { m, k := rf(t); v := m.Elem(k); found := boolV(true); if v == nil { found = boolV(false); v = vt.Zero(); } t.f.Vars[tempIdx] = multiV([]Value {v, &found}); }; } else { rf := a.rs[0].asMulti(); effect = func(t *Thread) { t.f.Vars[tempIdx] = multiV(rf(t)); }; } orig := a.rs[0]; a.rs = make([]*expr, len(a.rmt.Elems)); for i, t := range a.rmt.Elems { if t.isIdeal() { log.Crashf("Right side of unpack contains ideal: %s", rmt); } a.rs[i] = orig.newExpr(t, orig.desc); index := i; a.rs[i].genValue(func(t *Thread) Value { return t.f.Vars[tempIdx].(multiV)[index] }); } } // Now len(a.rs) == len(a.rmt) and we've reduced any unpacking // to multi-assignment. // TODO(austin) Deal with assignment special cases. // Values of any type may always be assigned to variables of // compatible static type. for i, lt := range lmt.Elems { rt := rmt.Elems[i]; // When [an ideal is] (used in an expression) assigned // to a variable or typed constant, the destination // must be able to represent the assigned value. if rt.isIdeal() { a.rs[i] = a.rs[i].convertTo(lmt.Elems[i]); if a.rs[i] == nil { bad = true; continue; } rt = a.rs[i].t; } // A pointer p to an array can be assigned to a slice // variable v with compatible element type if the type // of p or v is unnamed. if rpt, ok := rt.lit().(*PtrType); ok { if at, ok := rpt.Elem.lit().(*ArrayType); ok { if lst, ok := lt.lit().(*SliceType); ok { if lst.Elem.compat(at.Elem, false) && (rt.lit() == Type(rt) || lt.lit() == Type(lt)) { rf := a.rs[i].asPtr(); a.rs[i] = a.rs[i].newExpr(lt, a.rs[i].desc); len := at.Len; a.rs[i].eval = func(t *Thread) Slice { return Slice{rf(t).(ArrayValue), len, len}; }; rt = a.rs[i].t; } } } } if !lt.compat(rt, false) { if len(a.rs) == 1 { a.rs[0].diag("illegal operand types for %s\n\t%v\n\t%v", a.errOp, lt, rt); } else { a.rs[i].diag("illegal operand types in %s %d of %s\n\t%v\n\t%v", a.errPosName, i+1, a.errOp, lt, rt); } bad = true; } } if bad { return nil; } // Compile if !isMT { // Case 1 return genAssign(lt, a.rs[0]); } // Case 2 or 3 as := make([]func(lv Value, t *Thread), len(a.rs)); for i, r := range a.rs { as[i] = genAssign(lmt.Elems[i], r); } return func(lv Value, t *Thread) { if effect != nil { effect(t); } lmv := lv.(multiV); for i, a := range as { a(lmv[i], t); } }; } // compileAssign compiles an assignment operation without the full // generality of an assignCompiler. See assignCompiler for a // description of the arguments. func (a *compiler) compileAssign(pos token.Position, b *block, lt Type, rs []*expr, errOp, errPosName string) (func(Value, *Thread)) { ac, ok := a.checkAssign(pos, rs, errOp, errPosName); if !ok { return nil; } return ac.compile(b, lt); } /* * Expression compiler */ // An exprCompiler stores information used throughout the compilation // of a single expression. It does not embed funcCompiler because // expressions can appear at top level. type exprCompiler struct { *compiler; // The block this expression is being compiled in. block *block; // Whether this expression is used in a constant context. constant bool; } // compile compiles an expression AST. callCtx should be true if this // AST is in the function position of a function call node; it allows // the returned expression to be a type or a built-in function (which // otherwise result in errors). func (a *exprCompiler) compile(x ast.Expr, callCtx bool) *expr { ei := &exprInfo{a.compiler, x.Pos()}; switch x := x.(type) { // Literals case *ast.CharLit: return ei.compileCharLit(string(x.Value)); case *ast.CompositeLit: goto notimpl; case *ast.FloatLit: return ei.compileFloatLit(string(x.Value)); case *ast.FuncLit: decl := ei.compileFuncType(a.block, x.Type); if decl == nil { // TODO(austin) Try compiling the body, // perhaps with dummy argument definitions return nil; } fn := ei.compileFunc(a.block, decl, x.Body); if fn == nil { return nil; } if a.constant { a.diagAt(x, "function literal used in constant expression"); return nil; } return ei.compileFuncLit(decl, fn); case *ast.IntLit: return ei.compileIntLit(string(x.Value)); case *ast.StringLit: return ei.compileStringLit(string(x.Value)); // Types case *ast.ArrayType: // TODO(austin) Use a multi-type case goto typeexpr; case *ast.ChanType: goto typeexpr; case *ast.Ellipsis: goto typeexpr; case *ast.FuncType: goto typeexpr; case *ast.InterfaceType: goto typeexpr; case *ast.MapType: goto typeexpr; // Remaining expressions case *ast.BadExpr: // Error already reported by parser a.silentErrors++; return nil; case *ast.BinaryExpr: l, r := a.compile(x.X, false), a.compile(x.Y, false); if l == nil || r == nil { return nil; } return ei.compileBinaryExpr(x.Op, l, r); case *ast.CallExpr: l := a.compile(x.Fun, true); args := make([]*expr, len(x.Args)); bad := false; for i, arg := range x.Args { if i == 0 && l.t == Type(makeType) { argei := &exprInfo{a.compiler, arg.Pos()}; args[i] = argei.exprFromType(a.compileType(a.block, arg)); } else { args[i] = a.compile(arg, false); } if args[i] == nil { bad = true; } } if l == nil || bad { return nil; } if a.constant { a.diagAt(x, "function call in constant context"); return nil; } if l.valType != nil { a.diagAt(x, "type conversions not implemented"); return nil; } else if ft, ok := l.t.(*FuncType); ok && ft.builtin != "" { return ei.compileBuiltinCallExpr(a.block, ft, args); } else { return ei.compileCallExpr(a.block, l, args); } case *ast.Ident: return ei.compileIdent(a.block, a.constant, callCtx, x.Value); case *ast.IndexExpr: if x.End != nil { a.diagAt(x, "slice expression not implemented"); return nil; } l, r := a.compile(x.X, false), a.compile(x.Index, false); if l == nil || r == nil { return nil; } return ei.compileIndexExpr(l, r); case *ast.KeyValueExpr: goto notimpl; case *ast.ParenExpr: return a.compile(x.X, callCtx); case *ast.SelectorExpr: v := a.compile(x.X, false); if v == nil { return nil; } return ei.compileSelectorExpr(v, x.Sel.Value); case *ast.StarExpr: // We pass down our call context because this could be // a pointer type (and thus a type conversion) v := a.compile(x.X, callCtx); if v == nil { return nil; } if v.valType != nil { // Turns out this was a pointer type, not a dereference return ei.exprFromType(NewPtrType(v.valType)); } return ei.compileStarExpr(v); case *ast.StringList: strings := make([]*expr, len(x.Strings)); bad := false; for i, s := range x.Strings { strings[i] = a.compile(s, false); if strings[i] == nil { bad = true; } } if bad { return nil; } return ei.compileStringList(strings); case *ast.StructType: goto notimpl; case *ast.TypeAssertExpr: goto notimpl; case *ast.UnaryExpr: v := a.compile(x.X, false); if v == nil { return nil; } return ei.compileUnaryExpr(x.Op, v); } log.Crashf("unexpected ast node type %T", x); panic(); typeexpr: if !callCtx { a.diagAt(x, "type used as expression"); return nil; } return ei.exprFromType(a.compileType(a.block, x)); notimpl: a.diagAt(x, "%T expression node not implemented", x); return nil; } func (a *exprInfo) exprFromType(t Type) *expr { if t == nil { return nil; } expr := a.newExpr(nil, "type"); expr.valType = t; return expr; } func (a *exprInfo) compileIdent(b *block, constant bool, callCtx bool, name string) *expr { bl, level, def := b.Lookup(name); if def == nil { a.diag("%s: undefined", name); return nil; } switch def := def.(type) { case *Constant: expr := a.newExpr(def.Type, "constant"); if ft, ok := def.Type.(*FuncType); ok && ft.builtin != "" { // XXX(Spec) I don't think anything says that // built-in functions can't be used as values. if !callCtx { a.diag("built-in function %s cannot be used as a value", ft.builtin); return nil; } // Otherwise, we leave the evaluators empty // because this is handled specially } else { expr.genConstant(def.Value); } return expr; case *Variable: if constant { a.diag("variable %s used in constant expression", name); return nil; } if bl.global { return a.compileGlobalVariable(def); } return a.compileVariable(level, def); case Type: if callCtx { return a.exprFromType(def); } a.diag("type %v used as expression", name); return nil; } log.Crashf("name %s has unknown type %T", name, def); panic(); } func (a *exprInfo) compileVariable(level int, v *Variable) *expr { if v.Type == nil { // Placeholder definition from an earlier error a.silentErrors++; return nil; } expr := a.newExpr(v.Type, "variable"); expr.genIdentOp(level, v.Index); return expr; } func (a *exprInfo) compileGlobalVariable(v *Variable) *expr { if v.Type == nil { // Placeholder definition from an earlier error a.silentErrors++; return nil; } if v.Init == nil { v.Init = v.Type.Zero(); } expr := a.newExpr(v.Type, "variable"); val := v.Init; expr.genValue(func(t *Thread) Value { return val }); return expr; } func (a *exprInfo) compileIdealInt(i *bignum.Integer, desc string) *expr { expr := a.newExpr(IdealIntType, desc); expr.eval = func() *bignum.Integer { return i }; return expr; } func (a *exprInfo) compileIntLit(lit string) *expr { i, _, _2 := bignum.IntFromString(lit, 0); return a.compileIdealInt(i, "integer literal"); } func (a *exprInfo) compileCharLit(lit string) *expr { if lit[0] != '\'' { // Caught by parser a.silentErrors++; return nil; } v, mb, tail, err := strconv.UnquoteChar(lit[1:len(lit)], '\''); if err != nil || tail != "'" { // Caught by parser a.silentErrors++; return nil; } return a.compileIdealInt(bignum.Int(int64(v)), "character literal"); } func (a *exprInfo) compileFloatLit(lit string) *expr { f, _, n := bignum.RatFromString(lit, 0); if n != len(lit) { log.Crashf("malformed float literal %s at %v passed parser", lit, a.pos); } expr := a.newExpr(IdealFloatType, "float literal"); expr.eval = func() *bignum.Rational { return f }; return expr; } func (a *exprInfo) compileString(s string) *expr { // Ideal strings don't have a named type but they are // compatible with type string. // TODO(austin) Use unnamed string type. expr := a.newExpr(StringType, "string literal"); expr.eval = func(*Thread) string { return s }; return expr; } func (a *exprInfo) compileStringLit(lit string) *expr { s, err := strconv.Unquote(lit); if err != nil { a.diag("illegal string literal, %v", err); return nil; } return a.compileString(s); } func (a *exprInfo) compileStringList(list []*expr) *expr { ss := make([]string, len(list)); for i, s := range list { ss[i] = s.asString()(nil); } return a.compileString(strings.Join(ss, "")); } func (a *exprInfo) compileFuncLit(decl *FuncDecl, fn func(*Thread) Func) *expr { expr := a.newExpr(decl.Type, "function literal"); expr.eval = fn; return expr; } func (a *exprInfo) compileSelectorExpr(v *expr, name string) *expr { // mark marks a field that matches the selector name. It // tracks the best depth found so far and whether more than // one field has been found at that depth. bestDepth := -1; ambig := false; amberr := ""; mark := func(depth int, pathName string) { switch { case bestDepth == -1 || depth < bestDepth: bestDepth = depth; ambig = false; amberr = ""; case depth == bestDepth: ambig = true; default: log.Crashf("Marked field at depth %d, but already found one at depth %d", depth, bestDepth); } amberr += "\n\t" + pathName[1:len(pathName)]; }; visited := make(map[Type] bool); // find recursively searches for the named field, starting at // type t. If it finds the named field, it returns a function // which takes an expr that represents a value of type 't' and // returns an expr that retrieves the named field. We delay // expr construction to avoid producing lots of useless expr's // as we search. // // TODO(austin) Now that the expression compiler works on // semantic values instead of AST's, there should be a much // better way of doing this. var find func(Type, int, string) (func (*expr) *expr); find = func(t Type, depth int, pathName string) (func (*expr) *expr) { // Don't bother looking if we've found something shallower if bestDepth != -1 && bestDepth < depth { return nil; } // Don't check the same type twice and avoid loops if _, ok := visited[t]; ok { return nil; } visited[t] = true; // Implicit dereference deref := false; if ti, ok := t.(*PtrType); ok { deref = true; t = ti.Elem; } // If it's a named type, look for methods if ti, ok := t.(*NamedType); ok { method, ok := ti.methods[name]; if ok { mark(depth, pathName + "." + name); log.Crash("Methods not implemented"); } t = ti.Def; } // If it's a struct type, check fields and embedded types var builder func(*expr) *expr; if t, ok := t.(*StructType); ok { for i, f := range t.Elems { var sub func(*expr) *expr; switch { case f.Name == name: mark(depth, pathName + "." + name); sub = func(e *expr) *expr { return e }; case f.Anonymous: sub = find(f.Type, depth+1, pathName + "." + f.Name); if sub == nil { continue; } default: continue; } // We found something. Create a // builder for accessing this field. ft := f.Type; index := i; builder = func(parent *expr) *expr { if deref { parent = a.compileStarExpr(parent); } expr := a.newExpr(ft, "selector expression"); pf := parent.asStruct(); evalAddr := func(t *Thread) Value { return pf(t).Field(index); }; expr.genValue(evalAddr); return sub(expr); }; } } return builder; }; builder := find(v.t, 0, ""); if builder == nil { a.diag("type %v has no field or method %s", v.t, name); return nil; } if ambig { a.diag("field %s is ambiguous in type %v%s", name, v.t, amberr); return nil; } return builder(v); } func (a *exprInfo) compileIndexExpr(l, r *expr) *expr { // Type check object l = l.derefArray(); var at Type; intIndex := false; var maxIndex int64 = -1; switch lt := l.t.lit().(type) { case *ArrayType: at = lt.Elem; intIndex = true; maxIndex = lt.Len; case *SliceType: at = lt.Elem; intIndex = true; case *stringType: at = Uint8Type; intIndex = true; case *MapType: at = lt.Elem; if r.t.isIdeal() { r = r.convertTo(lt.Key); if r == nil { return nil; } } if !lt.Key.compat(r.t, false) { a.diag("cannot use %s as index into %s", r.t, lt); return nil; } default: a.diag("cannot index into %v", l.t); return nil; } // Type check index and convert to int if necessary if intIndex { // XXX(Spec) It's unclear if ideal floats with no // fractional part are allowed here. 6g allows it. I // believe that's wrong. r = r.convertToInt(maxIndex, "index", "index"); if r == nil { return nil; } } expr := a.newExpr(at, "index expression"); // Compile switch lt := l.t.lit().(type) { case *ArrayType: lf := l.asArray(); rf := r.asInt(); bound := lt.Len; expr.genValue(func(t *Thread) Value { l, r := lf(t), rf(t); if r < 0 || r >= bound { t.Abort(IndexError{r, bound}); } return l.Elem(r); }); case *SliceType: lf := l.asSlice(); rf := r.asInt(); expr.genValue(func(t *Thread) Value { l, r := lf(t), rf(t); if l.Base == nil { t.Abort(NilPointerError{}); } if r < 0 || r >= l.Len { t.Abort(IndexError{r, l.Len}); } return l.Base.Elem(r); }); case *stringType: lf := l.asString(); rf := r.asInt(); // TODO(austin) This pulls over the whole string in a // remote setting, instead of just the one character. expr.eval = func(t *Thread) uint64 { l, r := lf(t), rf(t); if r < 0 || r >= int64(len(l)) { t.Abort(IndexError{r, int64(len(l))}); } return uint64(l[r]); } case *MapType: lf := l.asMap(); rf := r.asInterface(); expr.genValue(func(t *Thread) Value { m := lf(t); k := rf(t); if m == nil { t.Abort(NilPointerError{}); } e := m.Elem(k); if e == nil { t.Abort(KeyError{k}); } return e; }); // genValue makes things addressable, but map values // aren't addressable. expr.evalAddr = nil; expr.evalMapValue = func(t *Thread) (Map, interface{}) { // TODO(austin) Key check? nil check? return lf(t), rf(t); }; default: log.Crashf("unexpected left operand type %T", l.t.lit()); } return expr; } func (a *exprInfo) compileCallExpr(b *block, l *expr, as []*expr) *expr { // TODO(austin) Variadic functions. // Type check // XXX(Spec) Calling a named function type is okay. I really // think there needs to be a general discussion of named // types. A named type creates a new, distinct type, but the // type of that type is still whatever it's defined to. Thus, // in "type Foo int", Foo is still an integer type and in // "type Foo func()", Foo is a function type. lt, ok := l.t.lit().(*FuncType); if !ok { a.diag("cannot call non-function type %v", l.t); return nil; } // The arguments must be single-valued expressions assignment // compatible with the parameters of F. // // XXX(Spec) The spec is wrong. It can also be a single // multi-valued expression. nin := len(lt.In); assign := a.compileAssign(a.pos, b, NewMultiType(lt.In), as, "function call", "argument"); if assign == nil { return nil; } var t Type; nout := len(lt.Out); switch nout { case 0: t = EmptyType; case 1: t = lt.Out[0]; default: t = NewMultiType(lt.Out); } expr := a.newExpr(t, "function call"); // Gather argument and out types to initialize frame variables vts := make([]Type, nin + nout); for i, t := range lt.In { vts[i] = t; } for i, t := range lt.Out { vts[i+nin] = t; } // Compile lf := l.asFunc(); call := func(t *Thread) []Value { fun := lf(t); fr := fun.NewFrame(); for i, t := range vts { fr.Vars[i] = t.Zero(); } assign(multiV(fr.Vars[0:nin]), t); oldf := t.f; t.f = fr; fun.Call(t); t.f = oldf; return fr.Vars[nin:nin+nout]; }; expr.genFuncCall(call); return expr; } func (a *exprInfo) compileBuiltinCallExpr(b *block, ft *FuncType, as []*expr) *expr { checkCount := func(min, max int) bool { if len(as) < min { a.diag("not enough arguments to %s", ft.builtin); return false; } else if len(as) > max { a.diag("too many arguments to %s", ft.builtin); return false; } return true; }; switch ft { case capType: if !checkCount(1, 1) { return nil; } arg := as[0].derefArray(); expr := a.newExpr(IntType, "function call"); switch t := arg.t.lit().(type) { case *ArrayType: // TODO(austin) It would be nice if this could // be a constant int. v := t.Len; expr.eval = func(t *Thread) int64 { return v; }; case *SliceType: vf := arg.asSlice(); expr.eval = func(t *Thread) int64 { return vf(t).Cap; }; //case *ChanType: default: a.diag("illegal argument type for cap function\n\t%v", arg.t); return nil; } return expr; case lenType: if !checkCount(1, 1) { return nil; } arg := as[0].derefArray(); expr := a.newExpr(IntType, "function call"); switch t := arg.t.lit().(type) { case *stringType: vf := arg.asString(); expr.eval = func(t *Thread) int64 { return int64(len(vf(t))); }; case *ArrayType: // TODO(austin) It would be nice if this could // be a constant int. v := t.Len; expr.eval = func(t *Thread) int64 { return v; }; case *SliceType: vf := arg.asSlice(); expr.eval = func(t *Thread) int64 { return vf(t).Len; }; case *MapType: vf := arg.asMap(); expr.eval = func(t *Thread) int64 { // XXX(Spec) What's the len of an // uninitialized map? m := vf(t); if m == nil { return 0; } return m.Len(); }; //case *ChanType: default: a.diag("illegal argument type for len function\n\t%v", arg.t); return nil; } return expr; case makeType: if !checkCount(1, 3) { return nil; } // XXX(Spec) What are the types of the // arguments? Do they have to be ints? 6g // accepts any integral type. var lenexpr, capexpr *expr; var lenf, capf func(*Thread) int64; if len(as) > 1 { lenexpr = as[1].convertToInt(-1, "length", "make function"); if lenexpr == nil { return nil; } lenf = lenexpr.asInt(); } if len(as) > 2 { capexpr = as[2].convertToInt(-1, "capacity", "make function"); if capexpr == nil { return nil; } capf = capexpr.asInt(); } switch t := as[0].valType.lit().(type) { case *SliceType: // A new, initialized slice value for a given // element type T is made using the built-in // function make, which takes a slice type and // parameters specifying the length and // optionally the capacity. if !checkCount(2, 3) { return nil; } et := t.Elem; expr := a.newExpr(t, "function call"); expr.eval = func(t *Thread) Slice { l := lenf(t); // XXX(Spec) What if len or cap is // negative? The runtime panics. if l < 0 { t.Abort(NegativeLengthError{l}); } c := l; if capf != nil { c = capf(t); if c < 0 { t.Abort(NegativeCapacityError{c}); } // XXX(Spec) What happens if // len > cap? The runtime // sets cap to len. if l > c { c = l; } } base := arrayV(make([]Value, c)); for i := int64(0); i < c; i++ { base[i] = et.Zero(); } return Slice{&base, l, c}; }; return expr; case *MapType: // A new, empty map value is made using the // built-in function make, which takes the map // type and an optional capacity hint as // arguments. if !checkCount(1, 2) { return nil; } expr := a.newExpr(t, "function call"); expr.eval = func(t *Thread) Map { if lenf == nil { return make(evalMap); } l := lenf(t); return make(evalMap, l); }; return expr; //case *ChanType: default: a.diag("illegal argument type for make function\n\t%v", as[0].valType); return nil; } case closeType, closedType, newType, panicType, paniclnType, printType, printlnType: a.diag("built-in function %s not implemented", ft.builtin); return nil; } log.Crashf("unexpected built-in function '%s'", ft.builtin); panic(); } func (a *exprInfo) compileStarExpr(v *expr) *expr { switch vt := v.t.lit().(type) { case *PtrType: expr := a.newExpr(vt.Elem, "indirect expression"); vf := v.asPtr(); expr.genValue(func(t *Thread) Value { v := vf(t); if v == nil { t.Abort(NilPointerError{}); } return v; }); return expr; } a.diagOpType(token.MUL, v.t); return nil; } var unaryOpDescs = make(map[token.Token] string) func (a *exprInfo) compileUnaryExpr(op token.Token, v *expr) *expr { // Type check var t Type; switch op { case token.ADD, token.SUB: if !v.t.isInteger() && !v.t.isFloat() { a.diagOpType(op, v.t); return nil; } t = v.t; case token.NOT: if !v.t.isBoolean() { a.diagOpType(op, v.t); return nil; } t = BoolType; case token.XOR: if !v.t.isInteger() { a.diagOpType(op, v.t); return nil; } t = v.t; case token.AND: // The unary prefix address-of operator & generates // the address of its operand, which must be a // variable, pointer indirection, field selector, or // array or slice indexing operation. if v.evalAddr == nil { a.diag("cannot take the address of %s", v.desc); return nil; } // TODO(austin) Implement "It is illegal to take the // address of a function result variable" once I have // function result variables. t = NewPtrType(v.t); case token.ARROW: log.Crashf("Unary op %v not implemented", op); default: log.Crashf("unknown unary operator %v", op); } desc, ok := unaryOpDescs[op]; if !ok { desc = "unary " + op.String() + " expression"; unaryOpDescs[op] = desc; } // Compile expr := a.newExpr(t, desc); switch op { case token.ADD: // Just compile it out expr = v; expr.desc = desc; case token.SUB: expr.genUnaryOpNeg(v); case token.NOT: expr.genUnaryOpNot(v); case token.XOR: expr.genUnaryOpXor(v); case token.AND: vf := v.evalAddr; expr.eval = func(t *Thread) Value { return vf(t) }; default: log.Crashf("Compilation of unary op %v not implemented", op); } return expr; } var binOpDescs = make(map[token.Token] string) func (a *exprInfo) compileBinaryExpr(op token.Token, l, r *expr) *expr { // Save the original types of l.t and r.t for error messages. origlt := l.t; origrt := r.t; // XXX(Spec) What is the exact definition of a "named type"? // XXX(Spec) Arithmetic operators: "Integer types" apparently // means all types compatible with basic integer types, though // this is never explained. Likewise for float types, etc. // This relates to the missing explanation of named types. // XXX(Spec) Operators: "If both operands are ideal numbers, // the conversion is to ideal floats if one of the operands is // an ideal float (relevant for / and %)." How is that // relevant only for / and %? If I add an ideal int and an // ideal float, I get an ideal float. if op != token.SHL && op != token.SHR { // Except in shift expressions, if one operand has // numeric type and the other operand is an ideal // number, the ideal number is converted to match the // type of the other operand. if (l.t.isInteger() || l.t.isFloat()) && !l.t.isIdeal() && r.t.isIdeal() { r = r.convertTo(l.t); } else if (r.t.isInteger() || r.t.isFloat()) && !r.t.isIdeal() && l.t.isIdeal() { l = l.convertTo(r.t); } if l == nil || r == nil { return nil; } // Except in shift expressions, if both operands are // ideal numbers and one is an ideal float, the other // is converted to ideal float. if l.t.isIdeal() && r.t.isIdeal() { if l.t.isInteger() && r.t.isFloat() { l = l.convertTo(r.t); } else if l.t.isFloat() && r.t.isInteger() { r = r.convertTo(l.t); } if l == nil || r == nil { return nil; } } } // Useful type predicates // TODO(austin) CL 33668 mandates identical types except for comparisons. compat := func() bool { return l.t.compat(r.t, false); }; integers := func() bool { return l.t.isInteger() && r.t.isInteger(); }; floats := func() bool { return l.t.isFloat() && r.t.isFloat(); }; strings := func() bool { // TODO(austin) Deal with named types return l.t == StringType && r.t == StringType; }; booleans := func() bool { return l.t.isBoolean() && r.t.isBoolean(); }; // Type check var t Type; switch op { case token.ADD: if !compat() || (!integers() && !floats() && !strings()) { a.diagOpTypes(op, origlt, origrt); return nil; } t = l.t; case token.SUB, token.MUL, token.QUO: if !compat() || (!integers() && !floats()) { a.diagOpTypes(op, origlt, origrt); return nil; } t = l.t; case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: if !compat() || !integers() { a.diagOpTypes(op, origlt, origrt); return nil; } t = l.t; case token.SHL, token.SHR: // XXX(Spec) Is it okay for the right operand to be an // ideal float with no fractional part? "The right // operand in a shift operation must be always be of // unsigned integer type or an ideal number that can // be safely converted into an unsigned integer type // (§Arithmetic operators)" suggests so and 6g agrees. if !l.t.isInteger() || !(r.t.isInteger() || r.t.isIdeal()) { a.diagOpTypes(op, origlt, origrt); return nil; } // The right operand in a shift operation must be // always be of unsigned integer type or an ideal // number that can be safely converted into an // unsigned integer type. if r.t.isIdeal() { r2 := r.convertTo(UintType); if r2 == nil { return nil; } // If the left operand is not ideal, convert // the right to not ideal. if !l.t.isIdeal() { r = r2; } // If both are ideal, but the right side isn't // an ideal int, convert it to simplify things. if l.t.isIdeal() && !r.t.isInteger() { r = r.convertTo(IdealIntType); if r == nil { log.Crashf("conversion to uintType succeeded, but conversion to idealIntType failed"); } } } else if _, ok := r.t.lit().(*uintType); !ok { a.diag("right operand of shift must be unsigned"); return nil; } if l.t.isIdeal() && !r.t.isIdeal() { // XXX(Spec) What is the meaning of "ideal >> // non-ideal"? Russ says the ideal should be // converted to an int. 6g propagates the // type down from assignments as a hint. l = l.convertTo(IntType); if l == nil { return nil; } } // At this point, we should have one of three cases: // 1) uint SHIFT uint // 2) int SHIFT uint // 3) ideal int SHIFT ideal int t = l.t; case token.LOR, token.LAND: if !booleans() { return nil; } // XXX(Spec) There's no mention of *which* boolean // type the logical operators return. From poking at // 6g, it appears to be the named boolean type, NOT // the type of the left operand, and NOT an unnamed // boolean type. t = BoolType; case token.ARROW: // The operands in channel sends differ in type: one // is always a channel and the other is a variable or // value of the channel's element type. log.Crash("Binary op <- not implemented"); t = BoolType; case token.LSS, token.GTR, token.LEQ, token.GEQ: // XXX(Spec) It's really unclear what types which // comparison operators apply to. I feel like the // text is trying to paint a Venn diagram for me, // which it's really pretty simple: <, <=, >, >= apply // only to numeric types and strings. == and != apply // to everything except arrays and structs, and there // are some restrictions on when it applies to slices. if !compat() || (!integers() && !floats() && !strings()) { a.diagOpTypes(op, origlt, origrt); return nil; } t = BoolType; case token.EQL, token.NEQ: // XXX(Spec) The rules for type checking comparison // operators are spread across three places that all // partially overlap with each other: the Comparison // Compatibility section, the Operators section, and // the Comparison Operators section. The Operators // section should just say that operators require // identical types (as it does currently) except that // there a few special cases for comparison, which are // described in section X. Currently it includes just // one of the four special cases. The Comparison // Compatibility section and the Comparison Operators // section should either be merged, or at least the // Comparison Compatibility section should be // exclusively about type checking and the Comparison // Operators section should be exclusively about // semantics. // XXX(Spec) Comparison operators: "All comparison // operators apply to basic types except bools." This // is very difficult to parse. It's explained much // better in the Comparison Compatibility section. // XXX(Spec) Comparison compatibility: "Function // values are equal if they refer to the same // function." is rather vague. It should probably be // similar to the way the rule for map values is // written: Function values are equal if they were // created by the same execution of a function literal // or refer to the same function declaration. This is // *almost* but not quite waht 6g implements. If a // function literals does not capture any variables, // then multiple executions of it will result in the // same closure. Russ says he'll change that. // TODO(austin) Deal with remaining special cases if !compat() { a.diagOpTypes(op, origlt, origrt); return nil; } // Arrays and structs may not be compared to anything. // TODO(austin) Use a multi-type switch if _, ok := l.t.(*ArrayType); ok { a.diagOpTypes(op, origlt, origrt); return nil; } if _, ok := l.t.(*StructType); ok { a.diagOpTypes(op, origlt, origrt); return nil; } t = BoolType; default: log.Crashf("unknown binary operator %v", op); } desc, ok := binOpDescs[op]; if !ok { desc = op.String() + " expression"; binOpDescs[op] = desc; } // Check for ideal divide by zero switch op { case token.QUO, token.REM: if r.t.isIdeal() { if (r.t.isInteger() && r.asIdealInt()().IsZero()) || (r.t.isFloat() && r.asIdealFloat()().IsZero()) { a.diag("divide by zero"); return nil; } } } // Compile expr := a.newExpr(t, desc); switch op { case token.ADD: expr.genBinOpAdd(l, r); case token.SUB: expr.genBinOpSub(l, r); case token.MUL: expr.genBinOpMul(l, r); case token.QUO: // TODO(austin) Clear higher bits that may have // accumulated in our temporary. expr.genBinOpQuo(l, r); case token.REM: // TODO(austin) Clear higher bits that may have // accumulated in our temporary. expr.genBinOpRem(l, r); case token.AND: expr.genBinOpAnd(l, r); case token.OR: expr.genBinOpOr(l, r); case token.XOR: expr.genBinOpXor(l, r); case token.AND_NOT: expr.genBinOpAndNot(l, r); case token.SHL: if l.t.isIdeal() { lv := l.asIdealInt()(); rv := r.asIdealInt()(); const maxShift = 99999; if rv.Cmp(bignum.Int(maxShift)) > 0 { a.diag("left shift by %v; exceeds implementation limit of %v", rv, maxShift); expr.t = nil; return nil; } val := lv.Shl(uint(rv.Value())); expr.eval = func() *bignum.Integer { return val }; } else { expr.genBinOpShl(l, r); } case token.SHR: if l.t.isIdeal() { lv := l.asIdealInt()(); rv := r.asIdealInt()(); val := lv.Shr(uint(rv.Value())); expr.eval = func() *bignum.Integer { return val }; } else { expr.genBinOpShr(l, r); } case token.LSS: expr.genBinOpLss(l, r); case token.GTR: expr.genBinOpGtr(l, r); case token.LEQ: expr.genBinOpLeq(l, r); case token.GEQ: expr.genBinOpGeq(l, r); case token.EQL: expr.genBinOpEql(l, r); case token.NEQ: expr.genBinOpNeq(l, r); default: log.Crashf("Compilation of binary op %v not implemented", op); } return expr; } // TODO(austin) This is a hack to eliminate a circular dependency // between type.go and expr.go func (a *compiler) compileArrayLen(b *block, expr ast.Expr) (int64, bool) { lenExpr := a.compileExpr(b, true, expr); if lenExpr == nil { return 0, false; } // XXX(Spec) Are ideal floats with no fractional part okay? if lenExpr.t.isIdeal() { lenExpr = lenExpr.convertTo(IntType); if lenExpr == nil { return 0, false; } } if !lenExpr.t.isInteger() { a.diagAt(expr, "array size must be an integer"); return 0, false; } switch _ := lenExpr.t.lit().(type) { case *intType: return lenExpr.asInt()(nil), true; case *uintType: return int64(lenExpr.asUint()(nil)), true; } log.Crashf("unexpected integer type %T", lenExpr.t); return 0, false; } func (a *compiler) compileExpr(b *block, constant bool, expr ast.Expr) *expr { ec := &exprCompiler{a, b, constant}; nerr := a.numError(); e := ec.compile(expr, false); if e == nil && nerr == a.numError() { log.Crashf("expression compilation failed without reporting errors"); } return e; } // extractEffect separates out any effects that the expression may // have, returning a function that will perform those effects and a // new exprCompiler that is guaranteed to be side-effect free. These // are the moral equivalents of "temp := expr" and "temp" (or "temp := // &expr" and "*temp" for addressable exprs). Because this creates a // temporary variable, the caller should create a temporary block for // the compilation of this expression and the evaluation of the // results. func (a *expr) extractEffect(b *block, errOp string) (func(*Thread), *expr) { // Create "&a" if a is addressable rhs := a; if a.evalAddr != nil { rhs = a.compileUnaryExpr(token.AND, rhs); } // Create temp ac, ok := a.checkAssign(a.pos, []*expr{rhs}, errOp, ""); if !ok { return nil, nil; } if len(ac.rmt.Elems) != 1 { a.diag("multi-valued expression not allowed in %s", errOp); return nil, nil; } tempType := ac.rmt.Elems[0]; if tempType.isIdeal() { // It's too bad we have to duplicate this rule. switch { case tempType.isInteger(): tempType = IntType; case tempType.isFloat(): tempType = FloatType; default: log.Crashf("unexpected ideal type %v", tempType); } } temp := b.DefineTemp(tempType); tempIdx := temp.Index; // Create "temp := rhs" assign := ac.compile(b, tempType); if assign == nil { log.Crashf("compileAssign type check failed"); } effect := func(t *Thread) { tempVal := tempType.Zero(); t.f.Vars[tempIdx] = tempVal; assign(tempVal, t); }; // Generate "temp" or "*temp" getTemp := a.compileVariable(0, temp); if a.evalAddr == nil { return effect, getTemp; } deref := a.compileStarExpr(getTemp); if deref == nil { return nil, nil; } return effect, deref; }