// Use of this source file is governed by a BSD-style // license that can be found in the LICENSE file.` #include "runtime.h" #include "defs.h" #include "os.h" #include "stack.h" extern SigTab runtime·sigtab[]; extern int64 runtime·rfork_thread(int32 flags, void *stack, M *m, G *g, void (*fn)(void)); extern void runtime·sys_sched_yield(void); // Basic spinlocks using CAS. We can improve on these later. static void lock(Lock *l) { uint32 v; int32 ret; for(;;) { if(runtime·cas(&l->key, 0, 1)) return; runtime·sys_sched_yield(); } } static void unlock(Lock *l) { uint32 v; int32 ret; for (;;) { v = l->key; if((v&1) == 0) runtime·throw("unlock of unlocked lock"); if(runtime·cas(&l->key, v, 0)) break; } } void runtime·lock(Lock *l) { if(m->locks < 0) runtime·throw("lock count"); m->locks++; lock(l); } void runtime·unlock(Lock *l) { m->locks--; if(m->locks < 0) runtime·throw("lock count"); unlock(l); } // Event notifications. void runtime·noteclear(Note *n) { n->lock.key = 0; lock(&n->lock); } void runtime·notesleep(Note *n) { lock(&n->lock); unlock(&n->lock); } void runtime·notewakeup(Note *n) { unlock(&n->lock); } // From OpenBSD's sys/param.h #define RFPROC (1<<4) /* change child (else changes curproc) */ #define RFMEM (1<<5) /* share `address space' */ #define RFNOWAIT (1<<6) /* parent need not wait() on child */ #define RFTHREAD (1<<13) /* create a thread, not a process */ void runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) { int32 flags; int32 ret; flags = RFPROC | RFTHREAD | RFMEM | RFNOWAIT; if (0) { runtime·printf( "newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n", stk, m, g, fn, m->id, m->tls[0], &m); } m->tls[0] = m->id; // so 386 asm can find it if((ret = runtime·rfork_thread(flags, stk, m, g, fn)) < 0) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret); runtime·printf("runtime: is kern.rthreads disabled?\n"); runtime·throw("runtime.newosproc"); } } void runtime·osinit(void) { } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). void runtime·minit(void) { // Initialize signal handling m->gsignal = runtime·malg(32*1024); runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); }