// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package norm import "utf8" const ( maxCombiningChars = 30 + 2 // +2 to hold CGJ and Hangul overflow. maxBackRunes = maxCombiningChars - 1 maxNFCExpansion = 3 // NFC(0x1D160) maxNFKCExpansion = 18 // NFKC(0xFDFA) maxRuneSizeInDecomp = 4 // Need to multiply by 2 as we don't reuse byte buffer space for recombining. maxByteBufferSize = 2 * maxRuneSizeInDecomp * maxCombiningChars // 256 ) // reorderBuffer is used to normalize a single segment. Characters inserted with // insert() are decomposed and reordered based on CCC. The compose() method can // be used to recombine characters. Note that the byte buffer does not hold // the UTF-8 characters in order. Only the rune array is maintained in sorted // order. flush() writes the resulting segment to a byte array. type reorderBuffer struct { rune [maxCombiningChars]runeInfo // Per character info. byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos. nrune int // Number of runeInfos. nbyte uint8 // Number or bytes. f formInfo } // reset discards all characters from the buffer. func (rb *reorderBuffer) reset() { rb.nrune = 0 rb.nbyte = 0 } // flush appends the normalized segment to out and resets rb. func (rb *reorderBuffer) flush(out []byte) []byte { for i := 0; i < rb.nrune; i++ { start := rb.rune[i].pos end := start + rb.rune[i].size out = append(out, rb.byte[start:end]...) } rb.reset() return out } // insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class. // It returns false if the buffer is not large enough to hold the rune. // It is used internally by insert. func (rb *reorderBuffer) insertOrdered(info runeInfo) bool { n := rb.nrune if n >= maxCombiningChars { return false } b := rb.rune[:] cc := info.ccc if cc > 0 { // Find insertion position + move elements to make room. for ; n > 0; n-- { if b[n-1].ccc <= cc { break } b[n] = b[n-1] } } rb.nrune += 1 pos := uint8(rb.nbyte) rb.nbyte += info.size info.pos = pos b[n] = info return true } // insert inserts the given rune in the buffer ordered by CCC. // It returns true if the buffer was large enough to hold the decomposed rune. func (rb *reorderBuffer) insert(src []byte, info runeInfo) bool { if info.size == 3 && isHangul(src) { rune, _ := utf8.DecodeRune(src) return rb.decomposeHangul(uint32(rune)) } pos := rb.nbyte if info.flags.hasDecomposition() { dcomp := rb.f.decompose(src) for i := 0; i < len(dcomp); i += int(info.size) { info = rb.f.info(dcomp[i:]) if !rb.insertOrdered(info) { return false } } copy(rb.byte[pos:], dcomp) } else { if !rb.insertOrdered(info) { return false } copy(rb.byte[pos:], src[:info.size]) } return true } // insertString inserts the given rune in the buffer ordered by CCC. // It returns true if the buffer was large enough to hold the decomposed rune. func (rb *reorderBuffer) insertString(src string, info runeInfo) bool { if info.size == 3 && isHangulString(src) { rune, _ := utf8.DecodeRuneInString(src) return rb.decomposeHangul(uint32(rune)) } pos := rb.nbyte if info.flags.hasDecomposition() { dcomp := rb.f.decomposeString(src) for i := 0; i < len(dcomp); i += int(info.size) { info = rb.f.info(dcomp[i:]) if !rb.insertOrdered(info) { return false } } copy(rb.byte[pos:], dcomp) } else { if !rb.insertOrdered(info) { return false } copy(rb.byte[pos:], src[:info.size]) } return true } // appendRune inserts a rune at the end of the buffer. It is used for Hangul. func (rb *reorderBuffer) appendRune(rune uint32) { bn := rb.nbyte sz := utf8.EncodeRune(rb.byte[bn:], int(rune)) rb.nbyte += uint8(sz) rb.rune[rb.nrune] = runeInfo{bn, uint8(sz), 0, 0} rb.nrune++ } // assignRune sets a rune at position pos. It is used for Hangul and recomposition. func (rb *reorderBuffer) assignRune(pos int, rune uint32) { bn := rb.nbyte sz := utf8.EncodeRune(rb.byte[bn:], int(rune)) rb.rune[pos] = runeInfo{bn, uint8(sz), 0, 0} rb.nbyte += uint8(sz) } // runeAt returns the rune at position n. It is used for Hangul and recomposition. func (rb *reorderBuffer) runeAt(n int) uint32 { inf := rb.rune[n] rune, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size]) return uint32(rune) } // bytesAt returns the UTF-8 encoding of the rune at position n. // It is used for Hangul and recomposition. func (rb *reorderBuffer) bytesAt(n int) []byte { inf := rb.rune[n] return rb.byte[inf.pos : int(inf.pos)+int(inf.size)] } // For Hangul we combine algorithmically, instead of using tables. const ( hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80 hangulBase0 = 0xEA hangulBase1 = 0xB0 hangulBase2 = 0x80 hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4 hangulEnd0 = 0xED hangulEnd1 = 0x9E hangulEnd2 = 0xA4 jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00 jamoLBase0 = 0xE1 jamoLBase1 = 0x84 jamoLEnd = 0x1113 jamoVBase = 0x1161 jamoVEnd = 0x1176 jamoTBase = 0x11A7 jamoTEnd = 0x11C3 jamoTCount = 28 jamoVCount = 21 jamoVTCount = 21 * 28 jamoLVTCount = 19 * 21 * 28 ) // Caller must verify that len(b) >= 3. func isHangul(b []byte) bool { b0 := b[0] if b0 < hangulBase0 { return false } b1 := b[1] switch { case b0 == hangulBase0: return b1 >= hangulBase1 case b0 < hangulEnd0: return true case b0 > hangulEnd0: return false case b1 < hangulEnd1: return true } return b1 == hangulEnd1 && b[2] < hangulEnd2 } // Caller must verify that len(b) >= 3. func isHangulString(b string) bool { b0 := b[0] if b0 < hangulBase0 { return false } b1 := b[1] switch { case b0 == hangulBase0: return b1 >= hangulBase1 case b0 < hangulEnd0: return true case b0 > hangulEnd0: return false case b1 < hangulEnd1: return true } return b1 == hangulEnd1 && b[2] < hangulEnd2 } // Caller must ensure len(b) >= 2. func isJamoVT(b []byte) bool { // True if (rune & 0xff00) == jamoLBase return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1 } func isHangulWithoutJamoT(b []byte) bool { c, _ := utf8.DecodeRune(b) c -= hangulBase return c < jamoLVTCount && c%jamoTCount == 0 } // decomposeHangul algorithmically decomposes a Hangul rune into // its Jamo components. // See http://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul. func (rb *reorderBuffer) decomposeHangul(rune uint32) bool { b := rb.rune[:] n := rb.nrune if n+3 > len(b) { return false } rune -= hangulBase x := rune % jamoTCount rune /= jamoTCount rb.appendRune(jamoLBase + rune/jamoVCount) rb.appendRune(jamoVBase + rune%jamoVCount) if x != 0 { rb.appendRune(jamoTBase + x) } return true } // combineHangul algorithmically combines Jamo character components into Hangul. // See http://unicode.org/reports/tr15/#Hangul for details on combining Hangul. func (rb *reorderBuffer) combineHangul(s, i, k int) { b := rb.rune[:] bn := rb.nrune for ; i < bn; i++ { cccB := b[k-1].ccc cccC := b[i].ccc if cccB == 0 { s = k - 1 } if s != k-1 && cccB >= cccC { // b[i] is blocked by greater-equal cccX below it b[k] = b[i] k++ } else { l := rb.runeAt(s) // also used to compare to hangulBase v := rb.runeAt(i) // also used to compare to jamoT switch { case jamoLBase <= l && l < jamoLEnd && jamoVBase <= v && v < jamoVEnd: // 11xx plus 116x to LV rb.assignRune(s, hangulBase+ (l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount) case hangulBase <= l && l < hangulEnd && jamoTBase < v && v < jamoTEnd && ((l-hangulBase)%jamoTCount) == 0: // ACxx plus 11Ax to LVT rb.assignRune(s, l+v-jamoTBase) default: b[k] = b[i] k++ } } } rb.nrune = k } // compose recombines the runes in the buffer. // It should only be used to recompose a single segment, as it will not // handle alternations between Hangul and non-Hangul characters correctly. func (rb *reorderBuffer) compose() { // UAX #15, section X5 , including Corrigendum #5 // "In any character sequence beginning with starter S, a character C is // blocked from S if and only if there is some character B between S // and C, and either B is a starter or it has the same or higher // combining class as C." k := 1 b := rb.rune[:] bn := rb.nrune for s, i := 0, 1; i < bn; i++ { if isJamoVT(rb.bytesAt(i)) { // Redo from start in Hangul mode. Necessary to support // U+320E..U+321E in NFKC mode. rb.combineHangul(s, i, k) return } ii := b[i] // We can only use combineForward as a filter if we later // get the info for the combined character. This is more // expensive than using the filter. Using combinesBackward() // is safe. if ii.flags.combinesBackward() { cccB := b[k-1].ccc cccC := ii.ccc blocked := false // b[i] blocked by starter or greater or equal CCC? if cccB == 0 { s = k - 1 } else { blocked = s != k-1 && cccB >= cccC } if !blocked { combined := combine(rb.runeAt(s), rb.runeAt(i)) if combined != 0 { rb.assignRune(s, combined) continue } } } b[k] = b[i] k++ } rb.nrune = k }