// asmcheck // Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package codegen // This file contains codegen tests related to arithmetic // simplifications and optimizations on integer types. // For codegen tests on float types, see floats.go. // ----------------- // // Subtraction // // ----------------- // var ef int func SubMem(arr []int, b, c, d int) int { // 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)` // amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)` arr[2] -= b // 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)` // amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)` arr[3] -= b // 386:`DECL\s16\([A-Z]+\)` arr[4]-- // 386:`ADDL\s[$]-20,\s20\([A-Z]+\)` arr[5] -= 20 // 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+` ef -= arr[b] // 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)` arr[c] -= b // 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)` arr[d] -= 15 // 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)` arr[b]-- // amd64:`DECQ\s64\([A-Z]+\)` arr[8]-- // 386:"SUBL\t4" // amd64:"SUBQ\t8" return arr[0] - arr[1] } func SubFromConst(a int) int { // ppc64le: `SUBC\tR[0-9]+,\s[$]40,\sR` // ppc64: `SUBC\tR[0-9]+,\s[$]40,\sR` b := 40 - a return b } func SubFromConstNeg(a int) int { // ppc64le: `ADD\t[$]40,\sR[0-9]+,\sR` // ppc64: `ADD\t[$]40,\sR[0-9]+,\sR` c := 40 - (-a) return c } func SubSubFromConst(a int) int { // ppc64le: `ADD\t[$]20,\sR[0-9]+,\sR` // ppc64: `ADD\t[$]20,\sR[0-9]+,\sR` c := 40 - (20 - a) return c } func AddSubFromConst(a int) int { // ppc64le: `SUBC\tR[0-9]+,\s[$]60,\sR` // ppc64: `SUBC\tR[0-9]+,\s[$]60,\sR` c := 40 + (20 - a) return c } func NegSubFromConst(a int) int { // ppc64le: `ADD\t[$]-20,\sR[0-9]+,\sR` // ppc64: `ADD\t[$]-20,\sR[0-9]+,\sR` c := -(20 - a) return c } func NegAddFromConstNeg(a int) int { // ppc64le: `SUBC\tR[0-9]+,\s[$]40,\sR` // ppc64: `SUBC\tR[0-9]+,\s[$]40,\sR` c := -(-40 + a) return c } // -------------------- // // Multiplication // // -------------------- // func Pow2Muls(n1, n2 int) (int, int) { // amd64:"SHLQ\t[$]5",-"IMULQ" // 386:"SHLL\t[$]5",-"IMULL" // arm:"SLL\t[$]5",-"MUL" // arm64:"LSL\t[$]5",-"MUL" // ppc64:"SLD\t[$]5",-"MUL" // ppc64le:"SLD\t[$]5",-"MUL" a := n1 * 32 // amd64:"SHLQ\t[$]6",-"IMULQ" // 386:"SHLL\t[$]6",-"IMULL" // arm:"SLL\t[$]6",-"MUL" // arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL` // ppc64:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL" // ppc64le:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL" b := -64 * n2 return a, b } func Mul_96(n int) int { // amd64:`SHLQ\t[$]5`,`LEAQ\t\(.*\)\(.*\*2\),`,-`IMULQ` // 386:`SHLL\t[$]5`,`LEAL\t\(.*\)\(.*\*2\),`,-`IMULL` // arm64:`LSL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL` // arm:`SLL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL` // s390x:`SLD\t[$]5`,`SLD\t[$]6`,-`MULLD` return n * 96 } func Mul_n120(n int) int { // s390x:`SLD\t[$]3`,`SLD\t[$]7`,-`MULLD` return n * -120 } func MulMemSrc(a []uint32, b []float32) { // 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+` a[0] *= a[1] // 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+` // amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+` b[0] *= b[1] } // Multiplications merging tests func MergeMuls1(n int) int { // amd64:"IMUL3Q\t[$]46" // 386:"IMUL3L\t[$]46" return 15*n + 31*n // 46n } func MergeMuls2(n int) int { // amd64:"IMUL3Q\t[$]23","(ADDQ\t[$]29)|(LEAQ\t29)" // 386:"IMUL3L\t[$]23","ADDL\t[$]29" return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29 } func MergeMuls3(a, n int) int { // amd64:"ADDQ\t[$]19",-"IMULQ\t[$]19" // 386:"ADDL\t[$]19",-"IMULL\t[$]19" return a*n + 19*n // (a+19)n } func MergeMuls4(n int) int { // amd64:"IMUL3Q\t[$]14" // 386:"IMUL3L\t[$]14" return 23*n - 9*n // 14n } func MergeMuls5(a, n int) int { // amd64:"ADDQ\t[$]-19",-"IMULQ\t[$]19" // 386:"ADDL\t[$]-19",-"IMULL\t[$]19" return a*n - 19*n // (a-19)n } // -------------- // // Division // // -------------- // func DivMemSrc(a []float64) { // 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+` // amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+` a[0] /= a[1] } func Pow2Divs(n1 uint, n2 int) (uint, int) { // 386:"SHRL\t[$]5",-"DIVL" // amd64:"SHRQ\t[$]5",-"DIVQ" // arm:"SRL\t[$]5",-".*udiv" // arm64:"LSR\t[$]5",-"UDIV" // ppc64:"SRD" // ppc64le:"SRD" a := n1 / 32 // unsigned // amd64:"SARQ\t[$]6",-"IDIVQ" // 386:"SARL\t[$]6",-"IDIVL" // arm:"SRA\t[$]6",-".*udiv" // arm64:"ASR\t[$]6",-"SDIV" // ppc64:"SRAD" // ppc64le:"SRAD" b := n2 / 64 // signed return a, b } // Check that constant divisions get turned into MULs func ConstDivs(n1 uint, n2 int) (uint, int) { // amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ" // 386:"MOVL\t[$]-252645135","MULL",-"DIVL" // arm64:`MOVD`,`UMULH`,-`DIV` // arm:`MOVW`,`MUL`,-`.*udiv` a := n1 / 17 // unsigned // amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ" // 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL" // arm64:`MOVD`,`SMULH`,-`DIV` // arm:`MOVW`,`MUL`,-`.*udiv` b := n2 / 17 // signed return a, b } func FloatDivs(a []float32) float32 { // amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+` // 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+` return a[1] / a[2] } func Pow2Mods(n1 uint, n2 int) (uint, int) { // 386:"ANDL\t[$]31",-"DIVL" // amd64:"ANDQ\t[$]31",-"DIVQ" // arm:"AND\t[$]31",-".*udiv" // arm64:"AND\t[$]31",-"UDIV" // ppc64:"ANDCC\t[$]31" // ppc64le:"ANDCC\t[$]31" a := n1 % 32 // unsigned // 386:"SHRL",-"IDIVL" // amd64:"SHRQ",-"IDIVQ" // arm:"SRA",-".*udiv" // arm64:"ASR",-"REM" // ppc64:"SRAD" // ppc64le:"SRAD" b := n2 % 64 // signed return a, b } // Check that signed divisibility checks get converted to AND on low bits func Pow2DivisibleSigned(n1, n2 int) (bool, bool) { // 386:"TESTL\t[$]63",-"DIVL",-"SHRL" // amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ" // arm:"AND\t[$]63",-".*udiv",-"SRA" // arm64:"AND\t[$]63",-"UDIV",-"ASR" // ppc64:"ANDCC\t[$]63",-"SRAD" // ppc64le:"ANDCC\t[$]63",-"SRAD" a := n1%64 == 0 // signed divisible // 386:"TESTL\t[$]63",-"DIVL",-"SHRL" // amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ" // arm:"AND\t[$]63",-".*udiv",-"SRA" // arm64:"AND\t[$]63",-"UDIV",-"ASR" // ppc64:"ANDCC\t[$]63",-"SRAD" // ppc64le:"ANDCC\t[$]63",-"SRAD" b := n2%64 != 0 // signed indivisible return a, b } // Check that constant modulo divs get turned into MULs func ConstMods(n1 uint, n2 int) (uint, int) { // amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ" // 386:"MOVL\t[$]-252645135","MULL",-"DIVL" // arm64:`MOVD`,`UMULH`,-`DIV` // arm:`MOVW`,`MUL`,-`.*udiv` a := n1 % 17 // unsigned // amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ" // 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL" // arm64:`MOVD`,`SMULH`,-`DIV` // arm:`MOVW`,`MUL`,-`.*udiv` b := n2 % 17 // signed return a, b } // Check that divisibility checks x%c==0 are converted to MULs and rotates func Divisible(n1 uint, n2 int) (bool, bool, bool, bool) { // amd64:"MOVQ\t[$]-6148914691236517205","IMULQ","ROLQ\t[$]63",-"DIVQ" // 386:"IMUL3L\t[$]-1431655765","ROLL\t[$]31",-"DIVQ" // arm64:"MOVD\t[$]-6148914691236517205","MUL","ROR",-"DIV" // arm:"MUL","CMP\t[$]715827882",-".*udiv" // ppc64:"MULLD","ROTL\t[$]63" // ppc64le:"MULLD","ROTL\t[$]63" evenU := n1%6 == 0 // amd64:"MOVQ\t[$]-8737931403336103397","IMULQ",-"ROLQ",-"DIVQ" // 386:"IMUL3L\t[$]678152731",-"ROLL",-"DIVQ" // arm64:"MOVD\t[$]-8737931403336103397","MUL",-"ROR",-"DIV" // arm:"MUL","CMP\t[$]226050910",-".*udiv" // ppc64:"MULLD",-"ROTL" // ppc64le:"MULLD",-"ROTL" oddU := n1%19 == 0 // amd64:"IMULQ","ADD","ROLQ\t[$]63",-"DIVQ" // 386:"IMUL3L\t[$]-1431655765","ADDL\t[$]715827882","ROLL\t[$]31",-"DIVQ" // arm64:"MUL","ADD\t[$]3074457345618258602","ROR",-"DIV" // arm:"MUL","ADD\t[$]715827882",-".*udiv" // ppc64/power8:"MULLD","ADD","ROTL\t[$]63" // ppc64le/power8:"MULLD","ADD","ROTL\t[$]63" // ppc64/power9:"MADDLD","ROTL\t[$]63" // ppc64le/power9:"MADDLD","ROTL\t[$]63" evenS := n2%6 == 0 // amd64:"IMULQ","ADD",-"ROLQ",-"DIVQ" // 386:"IMUL3L\t[$]678152731","ADDL\t[$]113025455",-"ROLL",-"DIVQ" // arm64:"MUL","ADD\t[$]485440633518672410",-"ROR",-"DIV" // arm:"MUL","ADD\t[$]113025455",-".*udiv" // ppc64/power8:"MULLD","ADD",-"ROTL" // ppc64/power9:"MADDLD",-"ROTL" // ppc64le/power8:"MULLD","ADD",-"ROTL" // ppc64le/power9:"MADDLD",-"ROTL" oddS := n2%19 == 0 return evenU, oddU, evenS, oddS } // Check that fix-up code is not generated for divisions where it has been proven that // that the divisor is not -1 or that the dividend is > MinIntNN. func NoFix64A(divr int64) (int64, int64) { var d int64 = 42 var e int64 = 84 if divr > 5 { d /= divr // amd64:-"JMP" e %= divr // amd64:-"JMP" // The following statement is to avoid conflict between the above check // and the normal JMP generated at the end of the block. d += e } return d, e } func NoFix64B(divd int64) (int64, int64) { var d int64 var e int64 var divr int64 = -1 if divd > -9223372036854775808 { d = divd / divr // amd64:-"JMP" e = divd % divr // amd64:-"JMP" d += e } return d, e } func NoFix32A(divr int32) (int32, int32) { var d int32 = 42 var e int32 = 84 if divr > 5 { // amd64:-"JMP" // 386:-"JMP" d /= divr // amd64:-"JMP" // 386:-"JMP" e %= divr d += e } return d, e } func NoFix32B(divd int32) (int32, int32) { var d int32 var e int32 var divr int32 = -1 if divd > -2147483648 { // amd64:-"JMP" // 386:-"JMP" d = divd / divr // amd64:-"JMP" // 386:-"JMP" e = divd % divr d += e } return d, e } func NoFix16A(divr int16) (int16, int16) { var d int16 = 42 var e int16 = 84 if divr > 5 { // amd64:-"JMP" // 386:-"JMP" d /= divr // amd64:-"JMP" // 386:-"JMP" e %= divr d += e } return d, e } func NoFix16B(divd int16) (int16, int16) { var d int16 var e int16 var divr int16 = -1 if divd > -32768 { // amd64:-"JMP" // 386:-"JMP" d = divd / divr // amd64:-"JMP" // 386:-"JMP" e = divd % divr d += e } return d, e } // Check that len() and cap() calls divided by powers of two are // optimized into shifts and ands func LenDiv1(a []int) int { // 386:"SHRL\t[$]10" // amd64:"SHRQ\t[$]10" // arm64:"LSR\t[$]10",-"SDIV" // arm:"SRL\t[$]10",-".*udiv" // ppc64:"SRD"\t[$]10" // ppc64le:"SRD"\t[$]10" return len(a) / 1024 } func LenDiv2(s string) int { // 386:"SHRL\t[$]11" // amd64:"SHRQ\t[$]11" // arm64:"LSR\t[$]11",-"SDIV" // arm:"SRL\t[$]11",-".*udiv" // ppc64:"SRD\t[$]11" // ppc64le:"SRD\t[$]11" return len(s) / (4097 >> 1) } func LenMod1(a []int) int { // 386:"ANDL\t[$]1023" // amd64:"ANDQ\t[$]1023" // arm64:"AND\t[$]1023",-"SDIV" // arm/6:"AND",-".*udiv" // arm/7:"BFC",-".*udiv",-"AND" // ppc64:"ANDCC\t[$]1023" // ppc64le:"ANDCC\t[$]1023" return len(a) % 1024 } func LenMod2(s string) int { // 386:"ANDL\t[$]2047" // amd64:"ANDQ\t[$]2047" // arm64:"AND\t[$]2047",-"SDIV" // arm/6:"AND",-".*udiv" // arm/7:"BFC",-".*udiv",-"AND" // ppc64:"ANDCC\t[$]2047" // ppc64le:"ANDCC\t[$]2047" return len(s) % (4097 >> 1) } func CapDiv(a []int) int { // 386:"SHRL\t[$]12" // amd64:"SHRQ\t[$]12" // arm64:"LSR\t[$]12",-"SDIV" // arm:"SRL\t[$]12",-".*udiv" // ppc64:"SRD\t[$]12" // ppc64le:"SRD\t[$]12" return cap(a) / ((1 << 11) + 2048) } func CapMod(a []int) int { // 386:"ANDL\t[$]4095" // amd64:"ANDQ\t[$]4095" // arm64:"AND\t[$]4095",-"SDIV" // arm/6:"AND",-".*udiv" // arm/7:"BFC",-".*udiv",-"AND" // ppc64:"ANDCC\t[$]4095" // ppc64le:"ANDCC\t[$]4095" return cap(a) % ((1 << 11) + 2048) } func AddMul(x int) int { // amd64:"LEAQ\t1" return 2*x + 1 } func MULA(a, b, c uint32) (uint32, uint32, uint32) { // arm:`MULA`,-`MUL\s` // arm64:`MADDW`,-`MULW` r0 := a*b + c // arm:`MULA`,-`MUL\s` // arm64:`MADDW`,-`MULW` r1 := c*79 + a // arm:`ADD`,-`MULA`,-`MUL\s` // arm64:`ADD`,-`MADD`,-`MULW` r2 := b*64 + c return r0, r1, r2 } func MULS(a, b, c uint32) (uint32, uint32, uint32) { // arm/7:`MULS`,-`MUL\s` // arm/6:`SUB`,`MUL\s`,-`MULS` // arm64:`MSUBW`,-`MULW` r0 := c - a*b // arm/7:`MULS`,-`MUL\s` // arm/6:`SUB`,`MUL\s`,-`MULS` // arm64:`MSUBW`,-`MULW` r1 := a - c*79 // arm/7:`SUB`,-`MULS`,-`MUL\s` // arm64:`SUB`,-`MSUBW`,-`MULW` r2 := c - b*64 return r0, r1, r2 } func addSpecial(a, b, c uint32) (uint32, uint32, uint32) { // amd64:`INCL` a++ // amd64:`DECL` b-- // amd64:`SUBL.*-128` c += 128 return a, b, c } // Divide -> shift rules usually require fixup for negative inputs. // If the input is non-negative, make sure the fixup is eliminated. func divInt(v int64) int64 { if v < 0 { return 0 } // amd64:-`.*SARQ.*63,`, -".*SHRQ", ".*SARQ.*[$]9," return v / 512 } // The reassociate rules "x - (z + C) -> (x - z) - C" and // "(z + C) -x -> C + (z - x)" can optimize the following cases. func constantFold1(i0, j0, i1, j1, i2, j2, i3, j3 int) (int, int, int, int) { // arm64:"SUB","ADD\t[$]2" r0 := (i0 + 3) - (j0 + 1) // arm64:"SUB","SUB\t[$]4" r1 := (i1 - 3) - (j1 + 1) // arm64:"SUB","ADD\t[$]4" r2 := (i2 + 3) - (j2 - 1) // arm64:"SUB","SUB\t[$]2" r3 := (i3 - 3) - (j3 - 1) return r0, r1, r2, r3 } // The reassociate rules "x - (z + C) -> (x - z) - C" and // "(C - z) - x -> C - (z + x)" can optimize the following cases. func constantFold2(i0, j0, i1, j1 int) (int, int) { // arm64:"ADD","MOVD\t[$]2","SUB" r0 := (3 - i0) - (j0 + 1) // arm64:"ADD","MOVD\t[$]4","SUB" r1 := (3 - i1) - (j1 - 1) return r0, r1 } func constantFold3(i, j int) int { // arm64: "MOVD\t[$]30","MUL",-"ADD",-"LSL" r := (5 * i) * (6 * j) return r }