// Copyright 2020 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package lsprpc implements a jsonrpc2.StreamServer that may be used to // serve the LSP on a jsonrpc2 channel. package lsprpc import ( "context" "encoding/json" "fmt" "log" "net" "os" "strconv" "sync/atomic" "time" "golang.org/x/sync/errgroup" "golang.org/x/tools/internal/jsonrpc2" "golang.org/x/tools/internal/lsp" "golang.org/x/tools/internal/lsp/cache" "golang.org/x/tools/internal/lsp/debug" "golang.org/x/tools/internal/lsp/protocol" "golang.org/x/tools/internal/telemetry/event" ) // AutoNetwork is the pseudo network type used to signal that gopls should use // automatic discovery to resolve a remote address. const AutoNetwork = "auto" // Unique identifiers for client/server. var clientIndex, serverIndex int64 // The StreamServer type is a jsonrpc2.StreamServer that handles incoming // streams as a new LSP session, using a shared cache. type StreamServer struct { cache *cache.Cache // serverForTest may be set to a test fake for testing. serverForTest protocol.Server } // NewStreamServer creates a StreamServer using the shared cache. If // withTelemetry is true, each session is instrumented with telemetry that // records RPC statistics. func NewStreamServer(cache *cache.Cache) *StreamServer { return &StreamServer{cache: cache} } // debugInstance is the common functionality shared between client and server // gopls instances. type debugInstance struct { id string debugAddress string logfile string goplsPath string } func (d debugInstance) ID() string { return d.id } func (d debugInstance) DebugAddress() string { return d.debugAddress } func (d debugInstance) Logfile() string { return d.logfile } func (d debugInstance) GoplsPath() string { return d.goplsPath } // A debugServer is held by the client to identity the remove server to which // it is connected. type debugServer struct { debugInstance // clientID is the id of this client on the server. clientID string } func (s debugServer) ClientID() string { return s.clientID } // A debugClient is held by the server to identify an incoming client // connection. type debugClient struct { debugInstance // session is the session serving this client. session *cache.Session // serverID is this id of this server on the client. serverID string } func (c debugClient) Session() debug.Session { return cache.DebugSession{Session: c.session} } func (c debugClient) ServerID() string { return c.serverID } // ServeStream implements the jsonrpc2.StreamServer interface, by handling // incoming streams using a new lsp server. func (s *StreamServer) ServeStream(ctx context.Context, stream jsonrpc2.Stream) error { index := atomic.AddInt64(&clientIndex, 1) conn := jsonrpc2.NewConn(stream) client := protocol.ClientDispatcher(conn) session := s.cache.NewSession(ctx) dc := &debugClient{ debugInstance: debugInstance{ id: strconv.FormatInt(index, 10), }, session: session, } if di := debug.GetInstance(ctx); di != nil { di.State.AddClient(dc) defer di.State.DropClient(dc) } server := s.serverForTest if server == nil { server = lsp.NewServer(session, client) } // Clients may or may not send a shutdown message. Make sure the server is // shut down. // TODO(rFindley): this shutdown should perhaps be on a disconnected context. defer func() { if err := server.Shutdown(ctx); err != nil { event.Error(ctx, "error shutting down", err) } }() executable, err := os.Executable() if err != nil { log.Printf("error getting gopls path: %v", err) executable = "" } ctx = protocol.WithClient(ctx, client) return conn.Run(ctx, protocol.Handlers( handshaker(dc, executable, protocol.ServerHandler(server, jsonrpc2.MethodNotFound)))) } // A Forwarder is a jsonrpc2.StreamServer that handles an LSP stream by // forwarding it to a remote. This is used when the gopls process started by // the editor is in the `-remote` mode, which means it finds and connects to a // separate gopls daemon. In these cases, we still want the forwarder gopls to // be instrumented with telemetry, and want to be able to in some cases hijack // the jsonrpc2 connection with the daemon. type Forwarder struct { network, addr string // goplsPath is the path to the current executing gopls binary. goplsPath string // configuration dialTimeout time.Duration retries int remoteDebug string remoteListenTimeout time.Duration remoteLogfile string } // A ForwarderOption configures the behavior of the LSP forwarder. type ForwarderOption interface { setForwarder(*Forwarder) } // RemoteDebugAddress configures the address used by the auto-started Gopls daemon // for serving debug information. type RemoteDebugAddress string func (d RemoteDebugAddress) setForwarder(fwd *Forwarder) { fwd.remoteDebug = string(d) } // RemoteListenTimeout configures the amount of time the auto-started gopls // daemon will wait with no client connections before shutting down. type RemoteListenTimeout time.Duration func (d RemoteListenTimeout) setForwarder(fwd *Forwarder) { fwd.remoteListenTimeout = time.Duration(d) } // RemoteLogfile configures the logfile location for the auto-started gopls // daemon. type RemoteLogfile string func (l RemoteLogfile) setForwarder(fwd *Forwarder) { fwd.remoteLogfile = string(l) } // NewForwarder creates a new Forwarder, ready to forward connections to the // remote server specified by network and addr. func NewForwarder(network, addr string, opts ...ForwarderOption) *Forwarder { gp, err := os.Executable() if err != nil { log.Printf("error getting gopls path for forwarder: %v", err) gp = "" } fwd := &Forwarder{ network: network, addr: addr, goplsPath: gp, dialTimeout: 1 * time.Second, retries: 5, remoteLogfile: "auto", remoteListenTimeout: 1 * time.Minute, } for _, opt := range opts { opt.setForwarder(fwd) } return fwd } // QueryServerState queries the server state of the current server. func QueryServerState(ctx context.Context, network, address string) (*ServerState, error) { if network == AutoNetwork { gp, err := os.Executable() if err != nil { return nil, fmt.Errorf("getting gopls path: %v", err) } network, address = autoNetworkAddress(gp, address) } netConn, err := net.DialTimeout(network, address, 5*time.Second) if err != nil { return nil, fmt.Errorf("dialing remote: %v", err) } serverConn := jsonrpc2.NewConn(jsonrpc2.NewHeaderStream(netConn, netConn)) go serverConn.Run(ctx, jsonrpc2.MethodNotFound) var state ServerState if err := protocol.Call(ctx, serverConn, sessionsMethod, nil, &state); err != nil { return nil, fmt.Errorf("querying server state: %v", err) } return &state, nil } // ServeStream dials the forwarder remote and binds the remote to serve the LSP // on the incoming stream. func (f *Forwarder) ServeStream(ctx context.Context, stream jsonrpc2.Stream) error { clientConn := jsonrpc2.NewConn(stream) client := protocol.ClientDispatcher(clientConn) netConn, err := f.connectToRemote(ctx) if err != nil { return fmt.Errorf("forwarder: connecting to remote: %v", err) } serverConn := jsonrpc2.NewConn(jsonrpc2.NewHeaderStream(netConn, netConn)) server := protocol.ServerDispatcher(serverConn) // Forward between connections. g, ctx := errgroup.WithContext(ctx) g.Go(func() error { return serverConn.Run(ctx, protocol.Handlers( protocol.ClientHandler(client, jsonrpc2.MethodNotFound))) }) // Don't run the clientConn yet, so that we can complete the handshake before // processing any client messages. // Do a handshake with the server instance to exchange debug information. index := atomic.AddInt64(&serverIndex, 1) serverID := strconv.FormatInt(index, 10) di := debug.GetInstance(ctx) var ( hreq = handshakeRequest{ ServerID: serverID, GoplsPath: f.goplsPath, } hresp handshakeResponse ) if di != nil { hreq.Logfile = di.Logfile hreq.DebugAddr = di.ListenedDebugAddress } if err := protocol.Call(ctx, serverConn, handshakeMethod, hreq, &hresp); err != nil { event.Error(ctx, "forwarder: gopls handshake failed", err) } if hresp.GoplsPath != f.goplsPath { event.Error(ctx, "", fmt.Errorf("forwarder: gopls path mismatch: forwarder is %q, remote is %q", f.goplsPath, hresp.GoplsPath)) } if di != nil { di.State.AddServer(debugServer{ debugInstance: debugInstance{ id: serverID, logfile: hresp.Logfile, debugAddress: hresp.DebugAddr, goplsPath: hresp.GoplsPath, }, clientID: hresp.ClientID, }) } g.Go(func() error { return clientConn.Run(ctx, protocol.Handlers( forwarderHandler( protocol.ServerHandler(server, jsonrpc2.MethodNotFound)))) }) return g.Wait() } func (f *Forwarder) connectToRemote(ctx context.Context) (net.Conn, error) { var ( netConn net.Conn err error network, address = f.network, f.addr ) if f.network == AutoNetwork { // f.network is overloaded to support a concept of 'automatic' addresses, // which signals that the gopls remote address should be automatically // derived. // So we need to resolve a real network and address here. network, address = autoNetworkAddress(f.goplsPath, f.addr) } // Attempt to verify that we own the remote. This is imperfect, but if we can // determine that the remote is owned by a different user, we should fail. ok, err := verifyRemoteOwnership(network, address) if err != nil { // If the ownership check itself failed, we fail open but log an error to // the user. event.Error(ctx, "unable to check daemon socket owner, failing open: %v", err) } else if !ok { // We succesfully checked that the socket is not owned by us, we fail // closed. return nil, fmt.Errorf("socket %q is owned by a different user", address) } // Try dialing our remote once, in case it is already running. netConn, err = net.DialTimeout(network, address, f.dialTimeout) if err == nil { return netConn, nil } // If our remote is on the 'auto' network, start it if it doesn't exist. if f.network == AutoNetwork { if f.goplsPath == "" { return nil, fmt.Errorf("cannot auto-start remote: gopls path is unknown") } if network == "unix" { // Sometimes the socketfile isn't properly cleaned up when gopls shuts // down. Since we have already tried and failed to dial this address, it // should *usually* be safe to remove the socket before binding to the // address. // TODO(rfindley): there is probably a race here if multiple gopls // instances are simultaneously starting up. if _, err := os.Stat(address); err == nil { if err := os.Remove(address); err != nil { return nil, fmt.Errorf("removing remote socket file: %v", err) } } } args := []string{"serve", "-listen", fmt.Sprintf(`%s;%s`, network, address), "-listen.timeout", f.remoteListenTimeout.String(), "-logfile", f.remoteLogfile, } if f.remoteDebug != "" { args = append(args, "-debug", f.remoteDebug) } if err := startRemote(f.goplsPath, args...); err != nil { return nil, fmt.Errorf("startRemote(%q, %v): %v", f.goplsPath, args, err) } } // It can take some time for the newly started server to bind to our address, // so we retry for a bit. for retry := 0; retry < f.retries; retry++ { startDial := time.Now() netConn, err = net.DialTimeout(network, address, f.dialTimeout) if err == nil { return netConn, nil } event.Print(ctx, fmt.Sprintf("failed attempt #%d to connect to remote: %v\n", retry+2, err)) // In case our failure was a fast-failure, ensure we wait at least // f.dialTimeout before trying again. if retry != f.retries-1 { time.Sleep(f.dialTimeout - time.Since(startDial)) } } return nil, fmt.Errorf("dialing remote: %v", err) } // ForwarderExitFunc is used to exit the forwarder process. It is mutable for // testing purposes. var ForwarderExitFunc = os.Exit // OverrideExitFuncsForTest can be used from test code to prevent the test // process from exiting on server shutdown. The returned func reverts the exit // funcs to their previous state. func OverrideExitFuncsForTest() func() { // Override functions that would shut down the test process cleanup := func(lspExit, forwarderExit func(code int)) func() { return func() { lsp.ServerExitFunc = lspExit ForwarderExitFunc = forwarderExit } }(lsp.ServerExitFunc, ForwarderExitFunc) // It is an error for a test to shutdown a server process. lsp.ServerExitFunc = func(code int) { panic(fmt.Sprintf("LSP server exited with code %d", code)) } // We don't want our forwarders to exit, but it's OK if they would have. ForwarderExitFunc = func(code int) {} return cleanup } // forwarderHandler intercepts 'exit' messages to prevent the shared gopls // instance from exiting. In the future it may also intercept 'shutdown' to // provide more graceful shutdown of the client connection. func forwarderHandler(handler jsonrpc2.Handler) jsonrpc2.Handler { return func(ctx context.Context, reply jsonrpc2.Replier, r jsonrpc2.Request) error { // TODO(golang.org/issues/34111): we should more gracefully disconnect here, // once that process exists. if r.Method() == "exit" { ForwarderExitFunc(0) // reply nil here to consume the message: in // tests, ForwarderExitFunc may be overridden to something that doesn't // exit the process. return reply(ctx, nil, nil) } return handler(ctx, reply, r) } } // A handshakeRequest identifies a client to the LSP server. type handshakeRequest struct { // ServerID is the ID of the server on the client. This should usually be 0. ServerID string `json:"serverID"` // Logfile is the location of the clients log file. Logfile string `json:"logfile"` // DebugAddr is the client debug address. DebugAddr string `json:"debugAddr"` // GoplsPath is the path to the Gopls binary running the current client // process. GoplsPath string `json:"goplsPath"` } // A handshakeResponse is returned by the LSP server to tell the LSP client // information about its session. type handshakeResponse struct { // ClientID is the ID of the client as seen on the server. ClientID string `json:"clientID"` // SessionID is the server session associated with the client. SessionID string `json:"sessionID"` // Logfile is the location of the server logs. Logfile string `json:"logfile"` // DebugAddr is the server debug address. DebugAddr string `json:"debugAddr"` // GoplsPath is the path to the Gopls binary running the current server // process. GoplsPath string `json:"goplsPath"` } // ClientSession identifies a current client LSP session on the server. Note // that it looks similar to handshakeResposne, but in fact 'Logfile' and // 'DebugAddr' now refer to the client. type ClientSession struct { ClientID string `json:"clientID"` SessionID string `json:"sessionID"` Logfile string `json:"logfile"` DebugAddr string `json:"debugAddr"` } // ServerState holds information about the gopls daemon process, including its // debug information and debug information of all of its current connected // clients. type ServerState struct { Logfile string `json:"logfile"` DebugAddr string `json:"debugAddr"` GoplsPath string `json:"goplsPath"` CurrentClientID string `json:"currentClientID"` Clients []ClientSession `json:"clients"` } const ( handshakeMethod = "gopls/handshake" sessionsMethod = "gopls/sessions" ) func handshaker(client *debugClient, goplsPath string, handler jsonrpc2.Handler) jsonrpc2.Handler { return func(ctx context.Context, reply jsonrpc2.Replier, r jsonrpc2.Request) error { switch r.Method() { case handshakeMethod: var req handshakeRequest if err := json.Unmarshal(r.Params(), &req); err != nil { sendError(ctx, reply, err) return nil } client.debugAddress = req.DebugAddr client.logfile = req.Logfile client.serverID = req.ServerID client.goplsPath = req.GoplsPath resp := handshakeResponse{ ClientID: client.id, SessionID: cache.DebugSession{Session: client.session}.ID(), GoplsPath: goplsPath, } if di := debug.GetInstance(ctx); di != nil { resp.Logfile = di.Logfile resp.DebugAddr = di.ListenedDebugAddress } return reply(ctx, resp, nil) case sessionsMethod: resp := ServerState{ GoplsPath: goplsPath, CurrentClientID: client.ID(), } if di := debug.GetInstance(ctx); di != nil { resp.Logfile = di.Logfile resp.DebugAddr = di.ListenedDebugAddress for _, c := range di.State.Clients() { resp.Clients = append(resp.Clients, ClientSession{ ClientID: c.ID(), SessionID: c.Session().ID(), Logfile: c.Logfile(), DebugAddr: c.DebugAddress(), }) } } return reply(ctx, resp, nil) } return handler(ctx, reply, r) } } func sendError(ctx context.Context, reply jsonrpc2.Replier, err error) { err = fmt.Errorf("%w: %v", jsonrpc2.ErrParse, err) if err := reply(ctx, nil, err); err != nil { event.Error(ctx, "", err) } }