// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "tls_arm64.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // SP = stack; R0 = argc; R1 = argv // initialize essential registers BL runtime·reginit(SB) SUB $32, RSP MOVW R0, 8(RSP) // argc MOVD R1, 16(RSP) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD RSP, R7 MOVD $(-64*1024)(R7), R0 MOVD R0, g_stackguard0(g) MOVD R0, g_stackguard1(g) MOVD R0, (g_stack+stack_lo)(g) MOVD R7, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R12 CMP $0, R12 BEQ nocgo MRS_TPIDR_R0 // load TLS base pointer MOVD R0, R3 // arg 3: TLS base pointer #ifdef TLSG_IS_VARIABLE MOVD $runtime·tls_g(SB), R2 // arg 2: tlsg #else MOVD $0x10, R2 // arg 2: tlsg TODO(minux): hardcoded for linux #endif MOVD $setg_gcc<>(SB), R1 // arg 1: setg MOVD g, R0 // arg 0: G BL (R12) MOVD _cgo_init(SB), R12 CMP $0, R12 BEQ nocgo nocgo: // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R0 ADD $const__StackGuard, R0 MOVD R0, g_stackguard0(g) MOVD R0, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R0 // save m->g0 = g0 MOVD g, m_g0(R0) // save m0 to g0->m MOVD R0, g_m(g) BL runtime·check(SB) MOVW 8(RSP), R0 // copy argc MOVW R0, -8(RSP) MOVD 16(RSP), R0 // copy argv MOVD R0, 0(RSP) BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R0 // entry MOVD RSP, R7 MOVD.W $0, -8(R7) MOVD.W R0, -8(R7) MOVD.W $0, -8(R7) MOVD.W $0, -8(R7) MOVD R7, RSP BL runtime·newproc(SB) ADD $32, RSP // start this M BL runtime·mstart(SB) MOVD $0, R0 MOVD R0, (R0) // boom UNDEF DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$-8-0 BRK RET TEXT runtime·asminit(SB),NOSPLIT,$-8-0 RET TEXT runtime·reginit(SB),NOSPLIT,$-8-0 // initialize essential FP registers FMOVD $4503601774854144.0, F27 FMOVD $0.5, F29 FSUBD F29, F29, F28 FADDD F29, F29, F30 FADDD F30, F30, F31 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $-8-8 MOVD buf+0(FP), R3 MOVD RSP, R0 MOVD R0, gobuf_sp(R3) MOVD LR, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD ZR, gobuf_lr(R3) MOVD ZR, gobuf_ret(R3) MOVD ZR, gobuf_ctxt(R3) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $-8-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g BL runtime·save_g(SB) MOVD 0(g), R4 // make sure g is not nil MOVD gobuf_sp(R5), R0 MOVD R0, RSP MOVD gobuf_lr(R5), LR MOVD gobuf_ret(R5), R0 MOVD gobuf_ctxt(R5), R26 MOVD $0, gobuf_sp(R5) MOVD $0, gobuf_ret(R5) MOVD $0, gobuf_lr(R5) MOVD $0, gobuf_ctxt(R5) CMP ZR, ZR // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R6 B (R6) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $-8-8 // Save caller state in g->sched MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) B runtime·badmcall(SB) MOVD fn+0(FP), R26 // context MOVD 0(R26), R4 // code pointer MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP // sp = m->g0->sched.sp MOVD R3, -8(RSP) MOVD $0, -16(RSP) SUB $16, RSP BL (R4) B runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R26 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMP g, R5 BEQ noswitch MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ noswitch MOVD m_curg(R4), R6 CMP g, R6 BEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R3 BL (R3) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVD $runtime·systemstack_switch(SB), R6 ADD $8, R6 // get past prologue MOVD R6, (g_sched+gobuf_pc)(g) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $16, R3 AND $~15, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, RSP // call target function MOVD 0(R26), R3 // code pointer BL (R3) // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD $0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly MOVD 0(R26), R3 // code pointer BL (R3) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3 prolog's LR (R30) // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$-8-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R8 MOVD m_g0(R8), R4 CMP g, R4 BNE 2(PC) B runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R8), R4 CMP g, R4 BNE 2(PC) B runtime·abort(SB) // Called from f. // Set g->sched to context in f MOVD R26, (g_sched+gobuf_ctxt)(g) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD R3, (g_sched+gobuf_lr)(g) // Called from f. // Set m->morebuf to f's callers. MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC MOVD RSP, R0 MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP MOVD g, (m_morebuf+gobuf_g)(R8) // Call newstack on m->g0's stack. MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-4-0 MOVW $0, R26 B runtime·morestack(SB) TEXT runtime·stackBarrier(SB),NOSPLIT,$0 // We came here via a RET to an overwritten LR. // R0 may be live (see return0). Other registers are available. // Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal. MOVD (g_stkbar+slice_array)(g), R4 MOVD g_stkbarPos(g), R5 MOVD $stkbar__size, R6 MUL R5, R6 ADD R4, R6 MOVD stkbar_savedLRVal(R6), R6 // Record that this stack barrier was hit. ADD $1, R5 MOVD R5, g_stkbarPos(g) // Jump to the original return PC. B (R6) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R27; \ CMP R27, R16; \ BGT 3(PC); \ MOVD $NAME(SB), R27; \ B (R27) // Note: can't just "B NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 B ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT, $-8-32 MOVWU argsize+24(FP), R16 // NOTE(rsc): No call16, because CALLFN needs four words // of argument space to invoke callwritebarrier. DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R0 B (R0) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+16(FP), R3; \ MOVWU argsize+24(FP), R4; \ MOVD RSP, R5; \ ADD $(8-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ CMP R5, R4; \ BEQ 4(PC); \ MOVBU.W 1(R3), R6; \ MOVBU.W R6, 1(R5); \ B -4(PC); \ /* call function */ \ MOVD f+8(FP), R26; \ MOVD (R26), R0; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R0); \ /* copy return values back */ \ MOVD arg+16(FP), R3; \ MOVWU n+24(FP), R4; \ MOVWU retoffset+28(FP), R6; \ MOVD RSP, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ ADD $(8-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ loop: \ CMP R5, R4; \ BEQ end; \ MOVBU.W 1(R5), R6; \ MOVBU.W R6, 1(R3); \ B loop; \ end: \ /* execute write barrier updates */ \ MOVD argtype+0(FP), R7; \ MOVD arg+16(FP), R3; \ MOVWU n+24(FP), R4; \ MOVWU retoffset+28(FP), R6; \ MOVD R7, 8(RSP); \ MOVD R3, 16(RSP); \ MOVD R4, 24(RSP); \ MOVD R6, 32(RSP); \ BL runtime·callwritebarrier(SB); \ RET // These have 8 added to make the overall frame size a multiple of 16, // as required by the ABI. (There is another +8 for the saved LR.) CALLFN(·call16, 24 ) CALLFN(·call32, 40 ) CALLFN(·call64, 72 ) CALLFN(·call128, 136 ) CALLFN(·call256, 264 ) CALLFN(·call512, 520 ) CALLFN(·call1024, 1032 ) CALLFN(·call2048, 2056 ) CALLFN(·call4096, 4104 ) CALLFN(·call8192, 8200 ) CALLFN(·call16384, 16392 ) CALLFN(·call32768, 32776 ) CALLFN(·call65536, 65544 ) CALLFN(·call131072, 131080 ) CALLFN(·call262144, 262152 ) CALLFN(·call524288, 524296 ) CALLFN(·call1048576, 1048584 ) CALLFN(·call2097152, 2097160 ) CALLFN(·call4194304, 4194312 ) CALLFN(·call8388608, 8388616 ) CALLFN(·call16777216, 16777224 ) CALLFN(·call33554432, 33554440 ) CALLFN(·call67108864, 67108872 ) CALLFN(·call134217728, 134217736 ) CALLFN(·call268435456, 268435464 ) CALLFN(·call536870912, 536870920 ) CALLFN(·call1073741824, 1073741832 ) // bool cas(uint32 *ptr, uint32 old, uint32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-17 MOVD ptr+0(FP), R0 MOVW old+8(FP), R1 MOVW new+12(FP), R2 again: LDAXRW (R0), R3 CMPW R1, R3 BNE ok STLXRW R2, (R0), R3 CBNZ R3, again ok: CSET EQ, R0 MOVB R0, ret+16(FP) RET TEXT runtime·casuintptr(SB), NOSPLIT, $0-25 B runtime·cas64(SB) TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $-8-16 B runtime·atomicload64(SB) TEXT runtime·atomicloaduint(SB), NOSPLIT, $-8-16 B runtime·atomicload64(SB) TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-16 B runtime·atomicstore64(SB) // AES hashing not implemented for ARM64, issue #10109. TEXT runtime·aeshash(SB),NOSPLIT,$-8-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT,$-8-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT,$-8-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT,$-8-0 MOVW $0, R0 MOVW (R0), R1 // bool casp(void **val, void *old, void *new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·casp1(SB), NOSPLIT, $0-25 B runtime·cas64(SB) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVWU cycles+0(FP), R0 again: YIELD SUBW $1, R0 CBNZ R0, again RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 4 bytes to get back to BL deferreturn // 3. BR to fn TEXT runtime·jmpdefer(SB), NOSPLIT, $-8-16 MOVD 0(RSP), R0 SUB $4, R0 MOVD R0, LR MOVD fv+0(FP), R26 MOVD argp+8(FP), R0 MOVD R0, RSP SUB $8, RSP MOVD 0(R26), R3 B (R3) // Save state of caller into g->sched. Smashes R0. TEXT gosave<>(SB),NOSPLIT,$-8 MOVD LR, (g_sched+gobuf_pc)(g) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD $0, (g_sched+gobuf_ret)(g) MOVD $0, (g_sched+gobuf_ctxt)(g) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVD fn+0(FP), R1 MOVD arg+8(FP), R0 MOVD RSP, R2 // save original stack pointer MOVD g, R4 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVD g_m(g), R8 MOVD m_g0(R8), R3 CMP R3, g BEQ g0 MOVD R0, R9 // gosave<> and save_g might clobber R0 BL gosave<>(SB) MOVD R3, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD R9, R0 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers /*, plus 32 bytes of callee // save area that lives on the caller stack. */ MOVD RSP, R13 SUB $16, R13 MOVD R13, RSP MOVD R4, 0(RSP) // save old g on stack MOVD (g_stack+stack_hi)(R4), R4 SUB R2, R4 MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) BL (R1) MOVD R0, R9 // Restore g, stack pointer. R0 is errno, so don't touch it MOVD 0(RSP), g BL runtime·save_g(SB) MOVD (g_stack+stack_hi)(g), R5 MOVD 8(RSP), R6 SUB R6, R5 MOVD R9, R0 MOVD R5, RSP MOVW R0, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$24-24 MOVD $fn+0(FP), R0 MOVD R0, 8(RSP) MOVD frame+8(FP), R0 MOVD R0, 16(RSP) MOVD framesize+16(FP), R0 MOVD R0, 24(RSP) MOVD $runtime·cgocallback_gofunc(SB), R0 BL (R0) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$24-24 NO_LOCAL_POINTERS // Load g from thread-local storage. MOVB runtime·iscgo(SB), R3 CMP $0, R3 BEQ nocgo BL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP $0, g BNE havem MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needm(SB), R0 BL (R0) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R8 MOVD m_g0(R8), R3 MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(R3) havem: MOVD g_m(g), R8 MOVD R8, savedm-8(SP) // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP). // Beware that the frame size is actually 32. MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -16(SP) and -8(SP) are unused. MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -(24+8)(R4) // maintain 16-byte SP alignment MOVD $-(24+8)(R4), R0 MOVD R0, RSP BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(RSP), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD RSP, R4 ADD $(24+8), R4, R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVD savedm-8(SP), R6 CMP $0, R6 BNE droppedm MOVD $runtime·dropm(SB), R0 BL (R0) droppedm: // Done! RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$24 // g (R28) and REGTMP (R27) might be clobbered by load_g. They // are callee-save in the gcc calling convention, so save them. MOVD R27, savedR27-8(SP) MOVD g, saveG-16(SP) BL runtime·load_g(SB) MOVD g_m(g), R0 MOVD m_curg(R0), R0 MOVD (g_stack+stack_hi)(R0), R0 MOVD saveG-16(SP), g MOVD savedR28-8(SP), R27 RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET // void setg_gcc(G*); set g called from gcc TEXT setg_gcc<>(SB),NOSPLIT,$8 MOVD R0, g MOVD R27, savedR27-8(SP) BL runtime·save_g(SB) MOVD savedR27-8(SP), R27 RET TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16 MOVD 16(RSP), R0 // LR saved by caller MOVD runtime·stackBarrierPC(SB), R1 CMP R0, R1 BNE nobar // Get original return PC. BL runtime·nextBarrierPC(SB) MOVD 8(RSP), R0 nobar: MOVD R0, ret+8(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16 MOVD pc+8(FP), R0 MOVD 16(RSP), R1 MOVD runtime·stackBarrierPC(SB), R2 CMP R1, R2 BEQ setbar MOVD R0, 16(RSP) // set LR in caller RET setbar: // Set the stack barrier return PC. MOVD R0, 8(RSP) BL runtime·setNextBarrierPC(SB) RET TEXT runtime·getcallersp(SB),NOSPLIT,$0-16 MOVD argp+0(FP), R0 SUB $8, R0 MOVD R0, ret+8(FP) RET TEXT runtime·abort(SB),NOSPLIT,$-8-0 B (ZR) UNDEF // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24 GO_ARGS NO_LOCAL_POINTERS MOVD p+0(FP), R3 MOVD h+8(FP), R4 MOVD 8(R26), R5 MOVD R3, 8(RSP) MOVD R4, 16(RSP) MOVD R5, 24(RSP) BL runtime·memhash(SB) MOVD 32(RSP), R3 MOVD R3, ret+16(FP) RET TEXT runtime·memeq(SB),NOSPLIT,$-8-25 MOVD a+0(FP), R1 MOVD b+8(FP), R2 MOVD size+16(FP), R3 ADD R1, R3, R6 MOVD $1, R0 MOVB R0, ret+24(FP) loop: CMP R1, R6 BEQ done MOVBU.P 1(R1), R4 MOVBU.P 1(R2), R5 CMP R4, R5 BEQ loop MOVB $0, ret+24(FP) done: RET // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17 MOVD a+0(FP), R3 MOVD b+8(FP), R4 CMP R3, R4 BEQ eq MOVD 8(R26), R5 // compiler stores size at offset 8 in the closure MOVD R3, 8(RSP) MOVD R4, 16(RSP) MOVD R5, 24(RSP) BL runtime·memeq(SB) MOVBU 32(RSP), R3 MOVB R3, ret+16(FP) RET eq: MOVD $1, R3 MOVB R3, ret+16(FP) RET TEXT runtime·cmpstring(SB),NOSPLIT,$-4-40 MOVD s1_base+0(FP), R2 MOVD s1_len+8(FP), R0 MOVD s2_base+16(FP), R3 MOVD s2_len+24(FP), R1 ADD $40, RSP, R7 B runtime·cmpbody<>(SB) TEXT bytes·Compare(SB),NOSPLIT,$-4-56 MOVD s1+0(FP), R2 MOVD s1+8(FP), R0 MOVD s2+24(FP), R3 MOVD s2+32(FP), R1 ADD $56, RSP, R7 B runtime·cmpbody<>(SB) // On entry: // R0 is the length of s1 // R1 is the length of s2 // R2 points to the start of s1 // R3 points to the start of s2 // R7 points to return value (-1/0/1 will be written here) // // On exit: // R4, R5, and R6 are clobbered TEXT runtime·cmpbody<>(SB),NOSPLIT,$-4-0 CMP R0, R1 CSEL LT, R1, R0, R6 // R6 is min(R0, R1) ADD R2, R6 // R2 is current byte in s1, R6 is last byte in s1 to compare loop: CMP R2, R6 BEQ samebytes // all compared bytes were the same; compare lengths MOVBU.P 1(R2), R4 MOVBU.P 1(R3), R5 CMP R4, R5 BEQ loop // bytes differed MOVD $1, R4 CSNEG LT, R4, R4, R4 MOVD R4, (R7) RET samebytes: MOVD $1, R4 CMP R0, R1 CSNEG LT, R4, R4, R4 CSEL EQ, ZR, R4, R4 MOVD R4, (R7) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-33 MOVD s1str+0(FP), R0 MOVD s1len+8(FP), R1 MOVD s2str+16(FP), R2 ADD R0, R1 // end loop: CMP R0, R1 BEQ equal // reaches the end MOVBU.P 1(R0), R4 MOVBU.P 1(R2), R5 CMP R4, R5 BEQ loop notequal: MOVB ZR, ret+32(FP) RET equal: MOVD $1, R0 MOVB R0, ret+32(FP) RET // // functions for other packages // TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 MOVD b+0(FP), R0 MOVD b_len+8(FP), R1 MOVBU c+24(FP), R2 // byte to find MOVD R0, R4 // store base for later ADD R0, R1 // end loop: CMP R0, R1 BEQ notfound MOVBU.P 1(R0), R3 CMP R2, R3 BNE loop SUB $1, R0 // R0 will be one beyond the position we want SUB R4, R0 // remove base MOVD R0, ret+32(FP) RET notfound: MOVD $-1, R0 MOVD R0, ret+32(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0-32 MOVD s+0(FP), R0 MOVD s_len+8(FP), R1 MOVBU c+16(FP), R2 // byte to find MOVD R0, R4 // store base for later ADD R0, R1 // end loop: CMP R0, R1 BEQ notfound MOVBU.P 1(R0), R3 CMP R2, R3 BNE loop SUB $1, R0 // R0 will be one beyond the position we want SUB R4, R0 // remove base MOVD R0, ret+24(FP) RET notfound: MOVD $-1, R0 MOVD R0, ret+24(FP) RET // TODO: share code with memeq? TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVD a_len+8(FP), R1 MOVD b_len+32(FP), R3 CMP R1, R3 // unequal lengths are not equal BNE notequal MOVD a+0(FP), R0 MOVD b+24(FP), R2 ADD R0, R1 // end loop: CMP R0, R1 BEQ equal // reaches the end MOVBU.P 1(R0), R4 MOVBU.P 1(R2), R5 CMP R4, R5 BEQ loop notequal: MOVB ZR, ret+48(FP) RET equal: MOVD $1, R0 MOVB R0, ret+48(FP) RET TEXT runtime·fastrand1(SB),NOSPLIT,$-8-4 MOVD g_m(g), R1 MOVWU m_fastrand(R1), R0 ADD R0, R0 CMPW $0, R0 BGE notneg EOR $0x88888eef, R0 notneg: MOVW R0, m_fastrand(R1) MOVW R0, ret+0(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R0 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$-8-0 MOVD R0, R0 // NOP BL runtime·goexit1(SB) // does not return // TODO(aram): use PRFM here. TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8 RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8 RET