// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Memory statistics package runtime import "unsafe" // Statistics. // If you edit this structure, also edit type MemStats below. type mstats struct { // General statistics. alloc uint64 // bytes allocated and not yet freed total_alloc uint64 // bytes allocated (even if freed) sys uint64 // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate) nlookup uint64 // number of pointer lookups nmalloc uint64 // number of mallocs nfree uint64 // number of frees // Statistics about malloc heap. // protected by mheap.lock heap_alloc uint64 // bytes allocated and not yet freed (same as alloc above) heap_sys uint64 // bytes obtained from system heap_idle uint64 // bytes in idle spans heap_inuse uint64 // bytes in non-idle spans heap_released uint64 // bytes released to the os heap_objects uint64 // total number of allocated objects // Statistics about allocation of low-level fixed-size structures. // Protected by FixAlloc locks. stacks_inuse uint64 // this number is included in heap_inuse above stacks_sys uint64 // always 0 in mstats mspan_inuse uint64 // mspan structures mspan_sys uint64 mcache_inuse uint64 // mcache structures mcache_sys uint64 buckhash_sys uint64 // profiling bucket hash table gc_sys uint64 other_sys uint64 // Statistics about garbage collector. // Protected by mheap or stopping the world during GC. next_gc uint64 // next gc (in heap_alloc time) last_gc uint64 // last gc (in absolute time) pause_total_ns uint64 pause_ns [256]uint64 // circular buffer of recent gc pause lengths pause_end [256]uint64 // circular buffer of recent gc end times (nanoseconds since 1970) numgc uint32 gc_cpu_fraction float64 // fraction of CPU time used by GC enablegc bool debuggc bool // Statistics about allocation size classes. by_size [_NumSizeClasses]struct { size uint32 nmalloc uint64 nfree uint64 } // Statistics below here are not exported to Go directly. tinyallocs uint64 // number of tiny allocations that didn't cause actual allocation; not exported to go directly // heap_live is the number of bytes considered live by the GC. // That is: retained by the most recent GC plus allocated // since then. heap_live <= heap_alloc, since heap_live // excludes unmarked objects that have not yet been swept. heap_live uint64 // heap_scan is the number of bytes of "scannable" heap. This // is the live heap (as counted by heap_live), but omitting // no-scan objects and no-scan tails of objects. heap_scan uint64 // heap_marked is the number of bytes marked by the previous // GC. After mark termination, heap_live == heap_marked, but // unlike heap_live, heap_marked does not change until the // next mark termination. heap_marked uint64 // heap_reachable is an estimate of the reachable heap bytes // at the end of the previous GC. heap_reachable uint64 } var memstats mstats // A MemStats records statistics about the memory allocator. type MemStats struct { // General statistics. Alloc uint64 // bytes allocated and not yet freed TotalAlloc uint64 // bytes allocated (even if freed) Sys uint64 // bytes obtained from system (sum of XxxSys below) Lookups uint64 // number of pointer lookups Mallocs uint64 // number of mallocs Frees uint64 // number of frees // Main allocation heap statistics. HeapAlloc uint64 // bytes allocated and not yet freed (same as Alloc above) HeapSys uint64 // bytes obtained from system HeapIdle uint64 // bytes in idle spans HeapInuse uint64 // bytes in non-idle span HeapReleased uint64 // bytes released to the OS HeapObjects uint64 // total number of allocated objects // Low-level fixed-size structure allocator statistics. // Inuse is bytes used now. // Sys is bytes obtained from system. StackInuse uint64 // bytes used by stack allocator StackSys uint64 MSpanInuse uint64 // mspan structures MSpanSys uint64 MCacheInuse uint64 // mcache structures MCacheSys uint64 BuckHashSys uint64 // profiling bucket hash table GCSys uint64 // GC metadata OtherSys uint64 // other system allocations // Garbage collector statistics. NextGC uint64 // next collection will happen when HeapAlloc ≥ this amount LastGC uint64 // end time of last collection (nanoseconds since 1970) PauseTotalNs uint64 PauseNs [256]uint64 // circular buffer of recent GC pause durations, most recent at [(NumGC+255)%256] PauseEnd [256]uint64 // circular buffer of recent GC pause end times NumGC uint32 GCCPUFraction float64 // fraction of CPU time used by GC EnableGC bool DebugGC bool // Per-size allocation statistics. // 61 is NumSizeClasses in the C code. BySize [61]struct { Size uint32 Mallocs uint64 Frees uint64 } } // Size of the trailing by_size array differs between Go and C, // and all data after by_size is local to runtime, not exported. // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility. // sizeof_C_MStats is what C thinks about size of Go struct. var sizeof_C_MStats = unsafe.Offsetof(memstats.by_size) + 61*unsafe.Sizeof(memstats.by_size[0]) func init() { var memStats MemStats if sizeof_C_MStats != unsafe.Sizeof(memStats) { println(sizeof_C_MStats, unsafe.Sizeof(memStats)) throw("MStats vs MemStatsType size mismatch") } } // ReadMemStats populates m with memory allocator statistics. func ReadMemStats(m *MemStats) { stopTheWorld("read mem stats") systemstack(func() { readmemstats_m(m) }) startTheWorld() } func readmemstats_m(stats *MemStats) { updatememstats(nil) // Size of the trailing by_size array differs between Go and C, // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility. memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats) // Stack numbers are part of the heap numbers, separate those out for user consumption stats.StackSys += stats.StackInuse stats.HeapInuse -= stats.StackInuse stats.HeapSys -= stats.StackInuse } //go:linkname readGCStats runtime/debug.readGCStats func readGCStats(pauses *[]uint64) { systemstack(func() { readGCStats_m(pauses) }) } func readGCStats_m(pauses *[]uint64) { p := *pauses // Calling code in runtime/debug should make the slice large enough. if cap(p) < len(memstats.pause_ns)+3 { throw("short slice passed to readGCStats") } // Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns. lock(&mheap_.lock) n := memstats.numgc if n > uint32(len(memstats.pause_ns)) { n = uint32(len(memstats.pause_ns)) } // The pause buffer is circular. The most recent pause is at // pause_ns[(numgc-1)%len(pause_ns)], and then backward // from there to go back farther in time. We deliver the times // most recent first (in p[0]). p = p[:cap(p)] for i := uint32(0); i < n; i++ { j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns)) p[i] = memstats.pause_ns[j] p[n+i] = memstats.pause_end[j] } p[n+n] = memstats.last_gc p[n+n+1] = uint64(memstats.numgc) p[n+n+2] = memstats.pause_total_ns unlock(&mheap_.lock) *pauses = p[:n+n+3] } //go:nowritebarrier func updatememstats(stats *gcstats) { if stats != nil { *stats = gcstats{} } for mp := allm; mp != nil; mp = mp.alllink { if stats != nil { src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats)) dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats)) for i, v := range src { dst[i] += v } mp.gcstats = gcstats{} } } memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse) memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse) memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys + memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys // Calculate memory allocator stats. // During program execution we only count number of frees and amount of freed memory. // Current number of alive object in the heap and amount of alive heap memory // are calculated by scanning all spans. // Total number of mallocs is calculated as number of frees plus number of alive objects. // Similarly, total amount of allocated memory is calculated as amount of freed memory // plus amount of alive heap memory. memstats.alloc = 0 memstats.total_alloc = 0 memstats.nmalloc = 0 memstats.nfree = 0 for i := 0; i < len(memstats.by_size); i++ { memstats.by_size[i].nmalloc = 0 memstats.by_size[i].nfree = 0 } // Flush MCache's to MCentral. systemstack(flushallmcaches) // Aggregate local stats. cachestats() // Scan all spans and count number of alive objects. lock(&mheap_.lock) for i := uint32(0); i < mheap_.nspan; i++ { s := h_allspans[i] if s.state != mSpanInUse { continue } if s.sizeclass == 0 { memstats.nmalloc++ memstats.alloc += uint64(s.elemsize) } else { memstats.nmalloc += uint64(s.ref) memstats.by_size[s.sizeclass].nmalloc += uint64(s.ref) memstats.alloc += uint64(s.ref) * uint64(s.elemsize) } } unlock(&mheap_.lock) // Aggregate by size class. smallfree := uint64(0) memstats.nfree = mheap_.nlargefree for i := 0; i < len(memstats.by_size); i++ { memstats.nfree += mheap_.nsmallfree[i] memstats.by_size[i].nfree = mheap_.nsmallfree[i] memstats.by_size[i].nmalloc += mheap_.nsmallfree[i] smallfree += uint64(mheap_.nsmallfree[i]) * uint64(class_to_size[i]) } memstats.nfree += memstats.tinyallocs memstats.nmalloc += memstats.nfree // Calculate derived stats. memstats.total_alloc = uint64(memstats.alloc) + uint64(mheap_.largefree) + smallfree memstats.heap_alloc = memstats.alloc memstats.heap_objects = memstats.nmalloc - memstats.nfree } //go:nowritebarrier func cachestats() { for i := 0; ; i++ { p := allp[i] if p == nil { break } c := p.mcache if c == nil { continue } purgecachedstats(c) } } //go:nowritebarrier func flushallmcaches() { for i := 0; ; i++ { p := allp[i] if p == nil { break } c := p.mcache if c == nil { continue } mCache_ReleaseAll(c) stackcache_clear(c) } } //go:nosplit func purgecachedstats(c *mcache) { // Protected by either heap or GC lock. h := &mheap_ memstats.heap_live += uint64(c.local_cachealloc) c.local_cachealloc = 0 if trace.enabled { traceHeapAlloc() } memstats.heap_scan += uint64(c.local_scan) c.local_scan = 0 memstats.tinyallocs += uint64(c.local_tinyallocs) c.local_tinyallocs = 0 memstats.nlookup += uint64(c.local_nlookup) c.local_nlookup = 0 h.largefree += uint64(c.local_largefree) c.local_largefree = 0 h.nlargefree += uint64(c.local_nlargefree) c.local_nlargefree = 0 for i := 0; i < len(c.local_nsmallfree); i++ { h.nsmallfree[i] += uint64(c.local_nsmallfree[i]) c.local_nsmallfree[i] = 0 } } // Atomically increases a given *system* memory stat. We are counting on this // stat never overflowing a uintptr, so this function must only be used for // system memory stats. // // The current implementation for little endian architectures is based on // xadduintptr(), which is less than ideal: xadd64() should really be used. // Using xadduintptr() is a stop-gap solution until arm supports xadd64() that // doesn't use locks. (Locks are a problem as they require a valid G, which // restricts their useability.) // // A side-effect of using xadduintptr() is that we need to check for // overflow errors. //go:nosplit func mSysStatInc(sysStat *uint64, n uintptr) { if _BigEndian != 0 { xadd64(sysStat, int64(n)) return } if val := xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), n); val < n { print("runtime: stat overflow: val ", val, ", n ", n, "\n") exit(2) } } // Atomically decreases a given *system* memory stat. Same comments as // mSysStatInc apply. //go:nosplit func mSysStatDec(sysStat *uint64, n uintptr) { if _BigEndian != 0 { xadd64(sysStat, -int64(n)) return } if val := xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), uintptr(-int64(n))); val+n < n { print("runtime: stat underflow: val ", val, ", n ", n, "\n") exit(2) } }