// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVL argc+0(FP), AX MOVL argv+4(FP), BX SUBL $128, SP // plenty of scratch ANDL $~15, SP MOVL AX, 120(SP) // save argc, argv away MOVL BX, 124(SP) // set default stack bounds. // _cgo_init may update stackguard. MOVL $runtime·g0(SB), BP LEAL (-64*1024+104)(SP), BX MOVL BX, g_stackguard0(BP) MOVL BX, g_stackguard1(BP) MOVL BX, (g_stack+stack_lo)(BP) MOVL SP, (g_stack+stack_hi)(BP) // find out information about the processor we're on MOVL $0, AX CPUID CMPL AX, $0 JE nocpuinfo // Figure out how to serialize RDTSC. // On Intel processors LFENCE is enough. AMD requires MFENCE. // Don't know about the rest, so let's do MFENCE. CMPL BX, $0x756E6547 // "Genu" JNE notintel CMPL DX, $0x49656E69 // "ineI" JNE notintel CMPL CX, $0x6C65746E // "ntel" JNE notintel MOVB $1, runtime·lfenceBeforeRdtsc(SB) notintel: MOVL $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: // if there is an _cgo_init, call it to let it // initialize and to set up GS. if not, // we set up GS ourselves. MOVL _cgo_init(SB), AX TESTL AX, AX JZ needtls MOVL $setg_gcc<>(SB), BX MOVL BX, 4(SP) MOVL BP, 0(SP) CALL AX // update stackguard after _cgo_init MOVL $runtime·g0(SB), CX MOVL (g_stack+stack_lo)(CX), AX ADDL $const__StackGuard, AX MOVL AX, g_stackguard0(CX) MOVL AX, g_stackguard1(CX) #ifndef GOOS_windows // skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows JMP ok #endif needtls: #ifdef GOOS_plan9 // skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases JMP ok #endif // set up %gs CALL runtime·ldt0setup(SB) // store through it, to make sure it works get_tls(BX) MOVL $0x123, g(BX) MOVL runtime·tls0(SB), AX CMPL AX, $0x123 JEQ ok MOVL AX, 0 // abort ok: // set up m and g "registers" get_tls(BX) LEAL runtime·g0(SB), CX MOVL CX, g(BX) LEAL runtime·m0(SB), AX // save m->g0 = g0 MOVL CX, m_g0(AX) // save g0->m = m0 MOVL AX, g_m(CX) CALL runtime·emptyfunc(SB) // fault if stack check is wrong // convention is D is always cleared CLD CALL runtime·check(SB) // saved argc, argv MOVL 120(SP), AX MOVL AX, 0(SP) MOVL 124(SP), AX MOVL AX, 4(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program PUSHL $runtime·mainPC(SB) // entry PUSHL $0 // arg size CALL runtime·newproc(SB) POPL AX POPL AX // start this M CALL runtime·mstart(SB) INT $3 RET DATA runtime·mainPC+0(SB)/4,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 INT $3 RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // Linux and MinGW start the FPU in extended double precision. // Other operating systems use double precision. // Change to double precision to match them, // and to match other hardware that only has double. PUSHL $0x27F FLDCW 0(SP) POPL AX RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-4 MOVL buf+0(FP), AX // gobuf LEAL buf+0(FP), BX // caller's SP MOVL BX, gobuf_sp(AX) MOVL 0(SP), BX // caller's PC MOVL BX, gobuf_pc(AX) MOVL $0, gobuf_ret(AX) MOVL $0, gobuf_ctxt(AX) get_tls(CX) MOVL g(CX), BX MOVL BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $0-4 MOVL buf+0(FP), BX // gobuf MOVL gobuf_g(BX), DX MOVL 0(DX), CX // make sure g != nil get_tls(CX) MOVL DX, g(CX) MOVL gobuf_sp(BX), SP // restore SP MOVL gobuf_ret(BX), AX MOVL gobuf_ctxt(BX), DX MOVL $0, gobuf_sp(BX) // clear to help garbage collector MOVL $0, gobuf_ret(BX) MOVL $0, gobuf_ctxt(BX) MOVL gobuf_pc(BX), BX JMP BX // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI get_tls(CX) MOVL g(CX), AX // save state in g->sched MOVL 0(SP), BX // caller's PC MOVL BX, (g_sched+gobuf_pc)(AX) LEAL fn+0(FP), BX // caller's SP MOVL BX, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVL g(CX), BX MOVL g_m(BX), BX MOVL m_g0(BX), SI CMPL SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVL $runtime·badmcall(SB), AX JMP AX MOVL SI, g(CX) // g = m->g0 MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHL AX MOVL DI, DX MOVL 0(DI), DI CALL DI POPL AX MOVL $runtime·badmcall2(SB), AX JMP AX RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI // DI = fn get_tls(CX) MOVL g(CX), AX // AX = g MOVL g_m(AX), BX // BX = m MOVL m_gsignal(BX), DX // DX = gsignal CMPL AX, DX JEQ noswitch MOVL m_g0(BX), DX // DX = g0 CMPL AX, DX JEQ noswitch MOVL m_curg(BX), BP CMPL AX, BP JEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVL $runtime·badsystemstack(SB), AX CALL AX switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVL $runtime·systemstack_switch(SB), (g_sched+gobuf_pc)(AX) MOVL SP, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to g0 MOVL DX, g(CX) MOVL (g_sched+gobuf_sp)(DX), BX // make it look like mstart called systemstack on g0, to stop traceback SUBL $4, BX MOVL $runtime·mstart(SB), DX MOVL DX, 0(BX) MOVL BX, SP // call target function MOVL DI, DX MOVL 0(DI), DI CALL DI // switch back to g get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), BX MOVL m_curg(BX), AX MOVL AX, g(CX) MOVL (g_sched+gobuf_sp)(AX), SP MOVL $0, (g_sched+gobuf_sp)(AX) RET noswitch: // already on system stack, just call directly MOVL DI, DX MOVL 0(DI), DI CALL DI RET /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). get_tls(CX) MOVL g(CX), BX MOVL g_m(BX), BX MOVL m_g0(BX), SI CMPL g(CX), SI JNE 2(PC) INT $3 // Cannot grow signal stack. MOVL m_gsignal(BX), SI CMPL g(CX), SI JNE 2(PC) INT $3 // Called from f. // Set m->morebuf to f's caller. MOVL 4(SP), DI // f's caller's PC MOVL DI, (m_morebuf+gobuf_pc)(BX) LEAL 8(SP), CX // f's caller's SP MOVL CX, (m_morebuf+gobuf_sp)(BX) get_tls(CX) MOVL g(CX), SI MOVL SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVL 0(SP), AX // f's PC MOVL AX, (g_sched+gobuf_pc)(SI) MOVL SI, (g_sched+gobuf_g)(SI) LEAL 4(SP), AX // f's SP MOVL AX, (g_sched+gobuf_sp)(SI) MOVL DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVL m_g0(BX), BP MOVL BP, g(CX) MOVL (g_sched+gobuf_sp)(BP), AX MOVL -4(AX), BX // fault if CALL would, before smashing SP MOVL AX, SP CALL runtime·newstack(SB) MOVL $0, 0x1003 // crash if newstack returns RET TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0 MOVL $0, DX JMP runtime·morestack(SB) TEXT runtime·stackBarrier(SB),NOSPLIT,$0 // We came here via a RET to an overwritten return PC. // AX may be live. Other registers are available. // Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal. get_tls(CX) MOVL g(CX), CX MOVL (g_stkbar+slice_array)(CX), DX MOVL g_stkbarPos(CX), BX IMULL $stkbar__size, BX // Too big for SIB. MOVL stkbar_savedLRVal(DX)(BX*1), BX // Record that this stack barrier was hit. ADDL $1, g_stkbarPos(CX) // Jump to the original return PC. JMP BX // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPL CX, $MAXSIZE; \ JA 3(PC); \ MOVL $NAME(SB), AX; \ JMP AX // Note: can't just "JMP NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 JMP ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT, $0-20 MOVL argsize+12(FP), CX DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVL $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-20; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVL argptr+8(FP), SI; \ MOVL argsize+12(FP), CX; \ MOVL SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVL f+4(FP), DX; \ MOVL (DX), AX; \ PCDATA $PCDATA_StackMapIndex, $0; \ CALL AX; \ /* copy return values back */ \ MOVL argptr+8(FP), DI; \ MOVL argsize+12(FP), CX; \ MOVL retoffset+16(FP), BX; \ MOVL SP, SI; \ ADDL BX, DI; \ ADDL BX, SI; \ SUBL BX, CX; \ REP;MOVSB; \ /* execute write barrier updates */ \ MOVL argtype+0(FP), DX; \ MOVL argptr+8(FP), DI; \ MOVL argsize+12(FP), CX; \ MOVL retoffset+16(FP), BX; \ MOVL DX, 0(SP); \ MOVL DI, 4(SP); \ MOVL CX, 8(SP); \ MOVL BX, 12(SP); \ CALL runtime·callwritebarrier(SB); \ RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // }else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-13 MOVL ptr+0(FP), BX MOVL old+4(FP), AX MOVL new+8(FP), CX LOCK CMPXCHGL CX, 0(BX) SETEQ ret+12(FP) RET TEXT runtime·casuintptr(SB), NOSPLIT, $0-13 JMP runtime·cas(SB) TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $0-8 JMP runtime·atomicload(SB) TEXT runtime·atomicloaduint(SB), NOSPLIT, $0-8 JMP runtime·atomicload(SB) TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-8 JMP runtime·atomicstore(SB) // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), NOSPLIT, $0-21 MOVL ptr+0(FP), BP MOVL old_lo+4(FP), AX MOVL old_hi+8(FP), DX MOVL new_lo+12(FP), BX MOVL new_hi+16(FP), CX LOCK CMPXCHG8B 0(BP) SETEQ ret+20(FP) RET // bool casp(void **p, void *old, void *new) // Atomically: // if(*p == old){ // *p = new; // return 1; // }else // return 0; TEXT runtime·casp1(SB), NOSPLIT, $0-13 MOVL ptr+0(FP), BX MOVL old+4(FP), AX MOVL new+8(FP), CX LOCK CMPXCHGL CX, 0(BX) SETEQ ret+12(FP) RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), BX MOVL delta+4(FP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX MOVL AX, ret+8(FP) RET TEXT runtime·xchg(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), BX MOVL new+4(FP), AX XCHGL AX, 0(BX) MOVL AX, ret+8(FP) RET TEXT runtime·xchguintptr(SB), NOSPLIT, $0-12 JMP runtime·xchg(SB) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL cycles+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-8 MOVL ptr+0(FP), BX MOVL val+4(FP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore(SB), NOSPLIT, $0-8 MOVL ptr+0(FP), BX MOVL val+4(FP), AX XCHGL AX, 0(BX) RET // uint64 atomicload64(uint64 volatile* addr); TEXT runtime·atomicload64(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), AX TESTL $7, AX JZ 2(PC) MOVL 0, AX // crash with nil ptr deref LEAL ret_lo+4(FP), BX // MOVQ (%EAX), %MM0 BYTE $0x0f; BYTE $0x6f; BYTE $0x00 // MOVQ %MM0, 0(%EBX) BYTE $0x0f; BYTE $0x7f; BYTE $0x03 // EMMS BYTE $0x0F; BYTE $0x77 RET // void runtime·atomicstore64(uint64 volatile* addr, uint64 v); TEXT runtime·atomicstore64(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), AX TESTL $7, AX JZ 2(PC) MOVL 0, AX // crash with nil ptr deref // MOVQ and EMMS were introduced on the Pentium MMX. // MOVQ 0x8(%ESP), %MM0 BYTE $0x0f; BYTE $0x6f; BYTE $0x44; BYTE $0x24; BYTE $0x08 // MOVQ %MM0, (%EAX) BYTE $0x0f; BYTE $0x7f; BYTE $0x00 // EMMS BYTE $0x0F; BYTE $0x77 // This is essentially a no-op, but it provides required memory fencing. // It can be replaced with MFENCE, but MFENCE was introduced only on the Pentium4 (SSE2). MOVL $0, AX LOCK XADDL AX, (SP) RET // void runtime·atomicor8(byte volatile*, byte); TEXT runtime·atomicor8(SB), NOSPLIT, $0-5 MOVL ptr+0(FP), AX MOVB val+4(FP), BX LOCK ORB BX, (AX) RET // void runtime·atomicand8(byte volatile*, byte); TEXT runtime·atomicand8(SB), NOSPLIT, $0-5 MOVL ptr+0(FP), AX MOVB val+4(FP), BX LOCK ANDB BX, (AX) RET TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 // Stores are already ordered on x86, so this is just a // compile barrier. RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8 MOVL fv+0(FP), DX // fn MOVL argp+4(FP), BX // caller sp LEAL -4(BX), SP // caller sp after CALL SUBL $5, (SP) // return to CALL again MOVL 0(DX), BX JMP BX // but first run the deferred function // Save state of caller into g->sched. TEXT gosave<>(SB),NOSPLIT,$0 PUSHL AX PUSHL BX get_tls(BX) MOVL g(BX), BX LEAL arg+0(FP), AX MOVL AX, (g_sched+gobuf_sp)(BX) MOVL -4(AX), AX MOVL AX, (g_sched+gobuf_pc)(BX) MOVL $0, (g_sched+gobuf_ret)(BX) MOVL $0, (g_sched+gobuf_ctxt)(BX) POPL BX POPL AX RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-12 MOVL fn+0(FP), AX MOVL arg+4(FP), BX MOVL SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVL g(CX), BP MOVL g_m(BP), BP MOVL m_g0(BP), SI MOVL g(CX), DI CMPL SI, DI JEQ 4(PC) CALL gosave<>(SB) MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). SUBL $32, SP ANDL $~15, SP // alignment, perhaps unnecessary MOVL DI, 8(SP) // save g MOVL (g_stack+stack_hi)(DI), DI SUBL DX, DI MOVL DI, 4(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) MOVL BX, 0(SP) // first argument in x86-32 ABI CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVL 8(SP), DI MOVL (g_stack+stack_hi)(DI), SI SUBL 4(SP), SI MOVL DI, g(CX) MOVL SI, SP MOVL AX, ret+8(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$12-12 LEAL fn+0(FP), AX MOVL AX, 0(SP) MOVL frame+4(FP), AX MOVL AX, 4(SP) MOVL framesize+8(FP), AX MOVL AX, 8(SP) MOVL $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$12-12 NO_LOCAL_POINTERS // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BP CMPL CX, $0 JEQ 2(PC) // TODO #endif MOVL g(CX), BP CMPL BP, $0 JEQ needm MOVL g_m(BP), BP MOVL BP, DX // saved copy of oldm JMP havem needm: MOVL $0, 0(SP) MOVL $runtime·needm(SB), AX CALL AX MOVL 0(SP), DX get_tls(CX) MOVL g(CX), BP MOVL g_m(BP), BP // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVL m_g0(BP), SI MOVL SP, (g_sched+gobuf_sp)(SI) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVL m_g0(BP), SI MOVL (g_sched+gobuf_sp)(SI), AX MOVL AX, 0(SP) MOVL SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, 0(SP) holds the saved oldm (DX) register. // 4(SP) and 8(SP) are unused. MOVL m_curg(BP), SI MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVL (g_sched+gobuf_pc)(SI), BP MOVL BP, -4(DI) LEAL -(4+12)(DI), SP MOVL DX, 0(SP) CALL runtime·cgocallbackg(SB) MOVL 0(SP), DX // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVL g(CX), SI MOVL 12(SP), BP MOVL BP, (g_sched+gobuf_pc)(SI) LEAL (12+4)(SP), DI MOVL DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVL g(CX), BP MOVL g_m(BP), BP MOVL m_g0(BP), SI MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), SP MOVL 0(SP), AX MOVL AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. CMPL DX, $0 JNE 3(PC) MOVL $runtime·dropm(SB), AX CALL AX // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-4 MOVL gg+0(FP), BX #ifdef GOOS_windows CMPL BX, $0 JNE settls MOVL $0, 0x14(FS) RET settls: MOVL g_m(BX), AX LEAL m_tls(AX), AX MOVL AX, 0x14(FS) #endif get_tls(CX) MOVL BX, g(CX) RET // void setg_gcc(G*); set g. for use by gcc TEXT setg_gcc<>(SB), NOSPLIT, $0 get_tls(AX) MOVL gg+0(FP), DX MOVL DX, g(AX) RET // check that SP is in range [g->stack.lo, g->stack.hi) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVL g(CX), AX CMPL (g_stack+stack_hi)(AX), SP JHI 2(PC) INT $3 CMPL SP, (g_stack+stack_lo)(AX) JHI 2(PC) INT $3 RET TEXT runtime·getcallerpc(SB),NOSPLIT,$4-8 MOVL argp+0(FP),AX // addr of first arg MOVL -4(AX),AX // get calling pc CMPL AX, runtime·stackBarrierPC(SB) JNE nobar // Get original return PC. CALL runtime·nextBarrierPC(SB) MOVL 0(SP), AX nobar: MOVL AX, ret+4(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$4-8 MOVL argp+0(FP),AX // addr of first arg MOVL pc+4(FP), BX MOVL -4(AX), CX CMPL CX, runtime·stackBarrierPC(SB) JEQ setbar MOVL BX, -4(AX) // set calling pc RET setbar: // Set the stack barrier return PC. MOVL BX, 0(SP) CALL runtime·setNextBarrierPC(SB) RET TEXT runtime·getcallersp(SB), NOSPLIT, $0-8 MOVL argp+0(FP), AX MOVL AX, ret+4(FP) RET // func cputicks() int64 TEXT runtime·cputicks(SB),NOSPLIT,$0-8 TESTL $0x4000000, runtime·cpuid_edx(SB) // no sse2, no mfence JEQ done CMPB runtime·lfenceBeforeRdtsc(SB), $1 JNE mfence BYTE $0x0f; BYTE $0xae; BYTE $0xe8 // LFENCE JMP done mfence: BYTE $0x0f; BYTE $0xae; BYTE $0xf0 // MFENCE done: RDTSC MOVL AX, ret_lo+0(FP) MOVL DX, ret_hi+4(FP) RET TEXT runtime·ldt0setup(SB),NOSPLIT,$16-0 // set up ldt 7 to point at tls0 // ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go. // the entry number is just a hint. setldt will set up GS with what it used. MOVL $7, 0(SP) LEAL runtime·tls0(SB), AX MOVL AX, 4(SP) MOVL $32, 8(SP) // sizeof(tls array) CALL runtime·setldt(SB) RET TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),NOSPLIT,$0-0 INT $0x3 // memhash_varlen(p unsafe.Pointer, h seed) uintptr // redirects to memhash(p, h, size) using the size // stored in the closure. TEXT runtime·memhash_varlen(SB),NOSPLIT,$16-12 GO_ARGS NO_LOCAL_POINTERS MOVL p+0(FP), AX MOVL h+4(FP), BX MOVL 4(DX), CX MOVL AX, 0(SP) MOVL BX, 4(SP) MOVL CX, 8(SP) CALL runtime·memhash(SB) MOVL 12(SP), AX MOVL AX, ret+8(FP) RET // hash function using AES hardware instructions TEXT runtime·aeshash(SB),NOSPLIT,$0-16 MOVL p+0(FP), AX // ptr to data MOVL s+8(FP), CX // size LEAL ret+12(FP), DX JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),NOSPLIT,$0-12 MOVL p+0(FP), AX // ptr to string object MOVL 4(AX), CX // length of string MOVL (AX), AX // string data LEAL ret+8(FP), DX JMP runtime·aeshashbody(SB) // AX: data // CX: length // DX: address to put return value TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0 MOVL h+4(FP), X0 // 32 bits of per-table hash seed PINSRW $4, CX, X0 // 16 bits of length PSHUFHW $0, X0, X0 // replace size with its low 2 bytes repeated 4 times MOVO X0, X1 // save unscrambled seed PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed AESENC X0, X0 // scramble seed CMPL CX, $16 JB aes0to15 JE aes16 CMPL CX, $32 JBE aes17to32 CMPL CX, $64 JBE aes33to64 JMP aes65plus aes0to15: TESTL CX, CX JE aes0 ADDL $16, AX TESTW $0xff0, AX JE endofpage // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU -16(AX), X1 ADDL CX, CX PAND masks<>(SB)(CX*8), X1 final1: AESENC X0, X1 // scramble input, xor in seed AESENC X1, X1 // scramble combo 2 times AESENC X1, X1 MOVL X1, (DX) RET endofpage: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -32(AX)(CX*1), X1 ADDL CX, CX PSHUFB shifts<>(SB)(CX*8), X1 JMP final1 aes0: // Return scrambled input seed AESENC X0, X0 MOVL X0, (DX) RET aes16: MOVOU (AX), X1 JMP final1 aes17to32: // make second starting seed PXOR runtime·aeskeysched+16(SB), X1 AESENC X1, X1 // load data to be hashed MOVOU (AX), X2 MOVOU -16(AX)(CX*1), X3 // scramble 3 times AESENC X0, X2 AESENC X1, X3 AESENC X2, X2 AESENC X3, X3 AESENC X2, X2 AESENC X3, X3 // combine results PXOR X3, X2 MOVL X2, (DX) RET aes33to64: // make 3 more starting seeds MOVO X1, X2 MOVO X1, X3 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 MOVOU (AX), X4 MOVOU 16(AX), X5 MOVOU -32(AX)(CX*1), X6 MOVOU -16(AX)(CX*1), X7 AESENC X0, X4 AESENC X1, X5 AESENC X2, X6 AESENC X3, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 PXOR X6, X4 PXOR X7, X5 PXOR X5, X4 MOVL X4, (DX) RET aes65plus: // make 3 more starting seeds MOVO X1, X2 MOVO X1, X3 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 // start with last (possibly overlapping) block MOVOU -64(AX)(CX*1), X4 MOVOU -48(AX)(CX*1), X5 MOVOU -32(AX)(CX*1), X6 MOVOU -16(AX)(CX*1), X7 // scramble state once AESENC X0, X4 AESENC X1, X5 AESENC X2, X6 AESENC X3, X7 // compute number of remaining 64-byte blocks DECL CX SHRL $6, CX aesloop: // scramble state, xor in a block MOVOU (AX), X0 MOVOU 16(AX), X1 MOVOU 32(AX), X2 MOVOU 48(AX), X3 AESENC X0, X4 AESENC X1, X5 AESENC X2, X6 AESENC X3, X7 // scramble state AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 ADDL $64, AX DECL CX JNE aesloop // 2 more scrambles to finish AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 PXOR X6, X4 PXOR X7, X5 PXOR X5, X4 MOVL X4, (DX) RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-12 MOVL p+0(FP), AX // ptr to data MOVL h+4(FP), X0 // seed PINSRD $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVL X0, ret+8(FP) RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-12 MOVL p+0(FP), AX // ptr to data MOVQ (AX), X0 // data PINSRD $2, h+4(FP), X0 // seed AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVL X0, ret+8(FP) RET // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/4, $0x00000000 DATA masks<>+0x04(SB)/4, $0x00000000 DATA masks<>+0x08(SB)/4, $0x00000000 DATA masks<>+0x0c(SB)/4, $0x00000000 DATA masks<>+0x10(SB)/4, $0x000000ff DATA masks<>+0x14(SB)/4, $0x00000000 DATA masks<>+0x18(SB)/4, $0x00000000 DATA masks<>+0x1c(SB)/4, $0x00000000 DATA masks<>+0x20(SB)/4, $0x0000ffff DATA masks<>+0x24(SB)/4, $0x00000000 DATA masks<>+0x28(SB)/4, $0x00000000 DATA masks<>+0x2c(SB)/4, $0x00000000 DATA masks<>+0x30(SB)/4, $0x00ffffff DATA masks<>+0x34(SB)/4, $0x00000000 DATA masks<>+0x38(SB)/4, $0x00000000 DATA masks<>+0x3c(SB)/4, $0x00000000 DATA masks<>+0x40(SB)/4, $0xffffffff DATA masks<>+0x44(SB)/4, $0x00000000 DATA masks<>+0x48(SB)/4, $0x00000000 DATA masks<>+0x4c(SB)/4, $0x00000000 DATA masks<>+0x50(SB)/4, $0xffffffff DATA masks<>+0x54(SB)/4, $0x000000ff DATA masks<>+0x58(SB)/4, $0x00000000 DATA masks<>+0x5c(SB)/4, $0x00000000 DATA masks<>+0x60(SB)/4, $0xffffffff DATA masks<>+0x64(SB)/4, $0x0000ffff DATA masks<>+0x68(SB)/4, $0x00000000 DATA masks<>+0x6c(SB)/4, $0x00000000 DATA masks<>+0x70(SB)/4, $0xffffffff DATA masks<>+0x74(SB)/4, $0x00ffffff DATA masks<>+0x78(SB)/4, $0x00000000 DATA masks<>+0x7c(SB)/4, $0x00000000 DATA masks<>+0x80(SB)/4, $0xffffffff DATA masks<>+0x84(SB)/4, $0xffffffff DATA masks<>+0x88(SB)/4, $0x00000000 DATA masks<>+0x8c(SB)/4, $0x00000000 DATA masks<>+0x90(SB)/4, $0xffffffff DATA masks<>+0x94(SB)/4, $0xffffffff DATA masks<>+0x98(SB)/4, $0x000000ff DATA masks<>+0x9c(SB)/4, $0x00000000 DATA masks<>+0xa0(SB)/4, $0xffffffff DATA masks<>+0xa4(SB)/4, $0xffffffff DATA masks<>+0xa8(SB)/4, $0x0000ffff DATA masks<>+0xac(SB)/4, $0x00000000 DATA masks<>+0xb0(SB)/4, $0xffffffff DATA masks<>+0xb4(SB)/4, $0xffffffff DATA masks<>+0xb8(SB)/4, $0x00ffffff DATA masks<>+0xbc(SB)/4, $0x00000000 DATA masks<>+0xc0(SB)/4, $0xffffffff DATA masks<>+0xc4(SB)/4, $0xffffffff DATA masks<>+0xc8(SB)/4, $0xffffffff DATA masks<>+0xcc(SB)/4, $0x00000000 DATA masks<>+0xd0(SB)/4, $0xffffffff DATA masks<>+0xd4(SB)/4, $0xffffffff DATA masks<>+0xd8(SB)/4, $0xffffffff DATA masks<>+0xdc(SB)/4, $0x000000ff DATA masks<>+0xe0(SB)/4, $0xffffffff DATA masks<>+0xe4(SB)/4, $0xffffffff DATA masks<>+0xe8(SB)/4, $0xffffffff DATA masks<>+0xec(SB)/4, $0x0000ffff DATA masks<>+0xf0(SB)/4, $0xffffffff DATA masks<>+0xf4(SB)/4, $0xffffffff DATA masks<>+0xf8(SB)/4, $0xffffffff DATA masks<>+0xfc(SB)/4, $0x00ffffff GLOBL masks<>(SB),RODATA,$256 // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/4, $0x00000000 DATA shifts<>+0x04(SB)/4, $0x00000000 DATA shifts<>+0x08(SB)/4, $0x00000000 DATA shifts<>+0x0c(SB)/4, $0x00000000 DATA shifts<>+0x10(SB)/4, $0xffffff0f DATA shifts<>+0x14(SB)/4, $0xffffffff DATA shifts<>+0x18(SB)/4, $0xffffffff DATA shifts<>+0x1c(SB)/4, $0xffffffff DATA shifts<>+0x20(SB)/4, $0xffff0f0e DATA shifts<>+0x24(SB)/4, $0xffffffff DATA shifts<>+0x28(SB)/4, $0xffffffff DATA shifts<>+0x2c(SB)/4, $0xffffffff DATA shifts<>+0x30(SB)/4, $0xff0f0e0d DATA shifts<>+0x34(SB)/4, $0xffffffff DATA shifts<>+0x38(SB)/4, $0xffffffff DATA shifts<>+0x3c(SB)/4, $0xffffffff DATA shifts<>+0x40(SB)/4, $0x0f0e0d0c DATA shifts<>+0x44(SB)/4, $0xffffffff DATA shifts<>+0x48(SB)/4, $0xffffffff DATA shifts<>+0x4c(SB)/4, $0xffffffff DATA shifts<>+0x50(SB)/4, $0x0e0d0c0b DATA shifts<>+0x54(SB)/4, $0xffffff0f DATA shifts<>+0x58(SB)/4, $0xffffffff DATA shifts<>+0x5c(SB)/4, $0xffffffff DATA shifts<>+0x60(SB)/4, $0x0d0c0b0a DATA shifts<>+0x64(SB)/4, $0xffff0f0e DATA shifts<>+0x68(SB)/4, $0xffffffff DATA shifts<>+0x6c(SB)/4, $0xffffffff DATA shifts<>+0x70(SB)/4, $0x0c0b0a09 DATA shifts<>+0x74(SB)/4, $0xff0f0e0d DATA shifts<>+0x78(SB)/4, $0xffffffff DATA shifts<>+0x7c(SB)/4, $0xffffffff DATA shifts<>+0x80(SB)/4, $0x0b0a0908 DATA shifts<>+0x84(SB)/4, $0x0f0e0d0c DATA shifts<>+0x88(SB)/4, $0xffffffff DATA shifts<>+0x8c(SB)/4, $0xffffffff DATA shifts<>+0x90(SB)/4, $0x0a090807 DATA shifts<>+0x94(SB)/4, $0x0e0d0c0b DATA shifts<>+0x98(SB)/4, $0xffffff0f DATA shifts<>+0x9c(SB)/4, $0xffffffff DATA shifts<>+0xa0(SB)/4, $0x09080706 DATA shifts<>+0xa4(SB)/4, $0x0d0c0b0a DATA shifts<>+0xa8(SB)/4, $0xffff0f0e DATA shifts<>+0xac(SB)/4, $0xffffffff DATA shifts<>+0xb0(SB)/4, $0x08070605 DATA shifts<>+0xb4(SB)/4, $0x0c0b0a09 DATA shifts<>+0xb8(SB)/4, $0xff0f0e0d DATA shifts<>+0xbc(SB)/4, $0xffffffff DATA shifts<>+0xc0(SB)/4, $0x07060504 DATA shifts<>+0xc4(SB)/4, $0x0b0a0908 DATA shifts<>+0xc8(SB)/4, $0x0f0e0d0c DATA shifts<>+0xcc(SB)/4, $0xffffffff DATA shifts<>+0xd0(SB)/4, $0x06050403 DATA shifts<>+0xd4(SB)/4, $0x0a090807 DATA shifts<>+0xd8(SB)/4, $0x0e0d0c0b DATA shifts<>+0xdc(SB)/4, $0xffffff0f DATA shifts<>+0xe0(SB)/4, $0x05040302 DATA shifts<>+0xe4(SB)/4, $0x09080706 DATA shifts<>+0xe8(SB)/4, $0x0d0c0b0a DATA shifts<>+0xec(SB)/4, $0xffff0f0e DATA shifts<>+0xf0(SB)/4, $0x04030201 DATA shifts<>+0xf4(SB)/4, $0x08070605 DATA shifts<>+0xf8(SB)/4, $0x0c0b0a09 DATA shifts<>+0xfc(SB)/4, $0xff0f0e0d GLOBL shifts<>(SB),RODATA,$256 TEXT runtime·memeq(SB),NOSPLIT,$0-13 MOVL a+0(FP), SI MOVL b+4(FP), DI MOVL size+8(FP), BX LEAL ret+12(FP), AX JMP runtime·memeqbody(SB) // memequal_varlen(a, b unsafe.Pointer) bool TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-9 MOVL a+0(FP), SI MOVL b+4(FP), DI CMPL SI, DI JEQ eq MOVL 4(DX), BX // compiler stores size at offset 4 in the closure LEAL ret+8(FP), AX JMP runtime·memeqbody(SB) eq: MOVB $1, ret+8(FP) RET // eqstring tests whether two strings are equal. // The compiler guarantees that strings passed // to eqstring have equal length. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-17 MOVL s1str+0(FP), SI MOVL s2str+8(FP), DI CMPL SI, DI JEQ same MOVL s1len+4(FP), BX LEAL v+16(FP), AX JMP runtime·memeqbody(SB) same: MOVB $1, v+16(FP) RET TEXT bytes·Equal(SB),NOSPLIT,$0-25 MOVL a_len+4(FP), BX MOVL b_len+16(FP), CX CMPL BX, CX JNE eqret MOVL a+0(FP), SI MOVL b+12(FP), DI LEAL ret+24(FP), AX JMP runtime·memeqbody(SB) eqret: MOVB $0, ret+24(FP) RET // a in SI // b in DI // count in BX // address of result byte in AX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 CMPL BX, $4 JB small // 64 bytes at a time using xmm registers hugeloop: CMPL BX, $64 JB bigloop TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 JE bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDL $64, SI ADDL $64, DI SUBL $64, BX CMPL DX, $0xffff JEQ hugeloop MOVB $0, (AX) RET // 4 bytes at a time using 32-bit register bigloop: CMPL BX, $4 JBE leftover MOVL (SI), CX MOVL (DI), DX ADDL $4, SI ADDL $4, DI SUBL $4, BX CMPL CX, DX JEQ bigloop MOVB $0, (AX) RET // remaining 0-4 bytes leftover: MOVL -4(SI)(BX*1), CX MOVL -4(DI)(BX*1), DX CMPL CX, DX SETEQ (AX) RET small: CMPL BX, $0 JEQ equal LEAL 0(BX*8), CX NEGL CX MOVL SI, DX CMPB DX, $0xfc JA si_high // load at SI won't cross a page boundary. MOVL (SI), SI JMP si_finish si_high: // address ends in 111111xx. Load up to bytes we want, move to correct position. MOVL -4(SI)(BX*1), SI SHRL CX, SI si_finish: // same for DI. MOVL DI, DX CMPB DX, $0xfc JA di_high MOVL (DI), DI JMP di_finish di_high: MOVL -4(DI)(BX*1), DI SHRL CX, DI di_finish: SUBL SI, DI SHLL CX, DI equal: SETEQ (AX) RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-20 MOVL s1_base+0(FP), SI MOVL s1_len+4(FP), BX MOVL s2_base+8(FP), DI MOVL s2_len+12(FP), DX LEAL ret+16(FP), AX JMP runtime·cmpbody(SB) TEXT bytes·Compare(SB),NOSPLIT,$0-28 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+12(FP), DI MOVL s2+16(FP), DX LEAL ret+24(FP), AX JMP runtime·cmpbody(SB) TEXT bytes·IndexByte(SB),NOSPLIT,$0-20 MOVL s+0(FP), SI MOVL s_len+4(FP), CX MOVB c+12(FP), AL MOVL SI, DI CLD; REPN; SCASB JZ 3(PC) MOVL $-1, ret+16(FP) RET SUBL SI, DI SUBL $1, DI MOVL DI, ret+16(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0-16 MOVL s+0(FP), SI MOVL s_len+4(FP), CX MOVB c+8(FP), AL MOVL SI, DI CLD; REPN; SCASB JZ 3(PC) MOVL $-1, ret+12(FP) RET SUBL SI, DI SUBL $1, DI MOVL DI, ret+12(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // AX = address of return word (set to 1/0/-1) TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 MOVL DX, BP SUBL BX, DX // DX = blen-alen CMOVLGT BX, BP // BP = min(alen, blen) CMPL SI, DI JEQ allsame CMPL BP, $4 JB small TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 JE mediumloop largeloop: CMPL BP, $16 JB mediumloop MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, BX XORL $0xffff, BX // convert EQ to NE JNE diff16 // branch if at least one byte is not equal ADDL $16, SI ADDL $16, DI SUBL $16, BP JMP largeloop diff16: BSFL BX, BX // index of first byte that differs XORL DX, DX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI DX LEAL -1(DX*2), DX // convert 1/0 to +1/-1 MOVL DX, (AX) RET mediumloop: CMPL BP, $4 JBE _0through4 MOVL (SI), BX MOVL (DI), CX CMPL BX, CX JNE diff4 ADDL $4, SI ADDL $4, DI SUBL $4, BP JMP mediumloop _0through4: MOVL -4(SI)(BP*1), BX MOVL -4(DI)(BP*1), CX CMPL BX, CX JEQ allsame diff4: BSWAPL BX // reverse order of bytes BSWAPL CX XORL BX, CX // find bit differences BSRL CX, CX // index of highest bit difference SHRL CX, BX // move a's bit to bottom ANDL $1, BX // mask bit LEAL -1(BX*2), BX // 1/0 => +1/-1 MOVL BX, (AX) RET // 0-3 bytes in common small: LEAL (BP*8), CX NEGL CX JEQ allsame // load si CMPB SI, $0xfc JA si_high MOVL (SI), SI JMP si_finish si_high: MOVL -4(SI)(BP*1), SI SHRL CX, SI si_finish: SHLL CX, SI // same for di CMPB DI, $0xfc JA di_high MOVL (DI), DI JMP di_finish di_high: MOVL -4(DI)(BP*1), DI SHRL CX, DI di_finish: SHLL CX, DI BSWAPL SI // reverse order of bytes BSWAPL DI XORL SI, DI // find bit differences JEQ allsame BSRL DI, CX // index of highest bit difference SHRL CX, SI // move a's bit to bottom ANDL $1, SI // mask bit LEAL -1(SI*2), BX // 1/0 => +1/-1 MOVL BX, (AX) RET // all the bytes in common are the same, so we just need // to compare the lengths. allsame: XORL BX, BX XORL CX, CX TESTL DX, DX SETLT BX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAL -1(CX)(BX*2), BX // 1,0,-1 result MOVL BX, (AX) RET TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), AX MOVL m_fastrand(AX), DX ADDL DX, DX MOVL DX, BX XORL $0x88888eef, DX CMOVLMI BX, DX MOVL DX, m_fastrand(AX) MOVL DX, ret+0(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVL $0, AX RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$0 get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), AX MOVL m_curg(AX), AX MOVL (g_stack+stack_hi)(AX), AX RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$0-0 BYTE $0x90 // NOP CALL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit BYTE $0x90 // NOP TEXT runtime·prefetcht0(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHT0 (AX) RET TEXT runtime·prefetcht1(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHT1 (AX) RET TEXT runtime·prefetcht2(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHT2 (AX) RET TEXT runtime·prefetchnta(SB),NOSPLIT,$0-4 MOVL addr+0(FP), AX PREFETCHNTA (AX) RET