// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Cover is a program for analyzing the coverage profiles generated by // 'go test -coverprofile'. // // Cover is also used by 'go test -cover' to rewrite the source code with // annotations to track which parts of each function are executed. // It operates on one Go source file at a time, computing approximate // basic block information by studying the source. It is thus more portable // than binary-rewriting coverage tools, but also a little less capable. // For instance, it does not probe inside && and || expressions, and can // be mildly confused by single statements with multiple function literals. package main import ( "bytes" "flag" "fmt" "go/ast" "go/parser" "go/printer" "go/token" "io" "io/ioutil" "log" "os" "sort" "strconv" ) // TODO(r,adg): change the command-line interface to be focused on analyzing // profiles. The coverage annotation function should be less accessible, as it // is used primarily by the go tool. var ( mode = flag.String("mode", "", "coverage mode: set, count, atomic") varVar = flag.String("var", "GoCover", "name of coverage variable to generate") output = flag.String("o", "", "file for output (static HTML or annotated Go source); default: stdout") htmlOut = flag.String("html", "", "generate HTML representation of coverage profile") ) var profile string // The profile to read; the value of -html but stored separately for future flexibility. var counterStmt func(*File, ast.Expr) ast.Stmt const ( atomicPackagePath = "sync/atomic" atomicPackageName = "_cover_atomic_" ) func usage() { fmt.Fprintf(os.Stderr, "Usage:\n") fmt.Fprintf(os.Stderr, " To display annotated source given a coverage profile produced by 'go test -coverprofile=c.out':\n") fmt.Fprintf(os.Stderr, " go tool cover -html=c.out\n") fmt.Fprintf(os.Stderr, " To generate modified source code with coverage annotations (what go test -cover does):\n") fmt.Fprintf(os.Stderr, " go tool cover -mode=set -var=CoverageVariableName program.go\n") fmt.Fprintf(os.Stderr, "Flags:\n") flag.PrintDefaults() os.Exit(2) } func main() { flag.Usage = usage flag.Parse() profile = *htmlOut // Must either display a profile or rewrite Go source. if (profile == "") == (*mode == "") { flag.Usage() } // Generate HTML. if *htmlOut != "" { if flag.NArg() != 0 { flag.Usage() } err := htmlOutput(profile, *output) if err != nil { fmt.Fprintf(os.Stderr, "cover: %v\n", err) os.Exit(2) } return } // Generate coverage-annotated source. switch *mode { case "set": counterStmt = setCounterStmt case "count": counterStmt = incCounterStmt case "atomic": counterStmt = atomicCounterStmt default: flag.Usage() } if flag.NArg() != 1 { flag.Usage() } cover(flag.Arg(0)) } // Block represents the information about a basic block to be recorded in the analysis. // Note: Our definition of basic block is based on control structures; we don't break // apart && and ||. We could but it doesn't seem important enough to bother. type Block struct { startByte token.Pos endByte token.Pos numStmt int } // File is a wrapper for the state of a file used in the parser. // The basic parse tree walker is a method of this type. type File struct { fset *token.FileSet name string // Name of file. astFile *ast.File blocks []Block atomicPkg string // Package name for "sync/atomic" in this file. } // Visit implements the ast.Visitor interface. func (f *File) Visit(node ast.Node) ast.Visitor { switch n := node.(type) { case *ast.BlockStmt: // If it's a switch or select, the body is a list of case clauses; don't tag the block itself. if len(n.List) > 0 { switch n.List[0].(type) { case *ast.CaseClause: // switch for _, n := range n.List { clause := n.(*ast.CaseClause) clause.Body = f.addCounters(clause.Pos(), clause.End(), clause.Body, false) } return f case *ast.CommClause: // select for _, n := range n.List { clause := n.(*ast.CommClause) clause.Body = f.addCounters(clause.Pos(), clause.End(), clause.Body, false) } return f } } n.List = f.addCounters(n.Lbrace, n.Rbrace+1, n.List, true) // +1 to step past closing brace. case *ast.SelectStmt: // Don't annotate an empty select - creates a syntax error. if n.Body == nil || len(n.Body.List) == 0 { return nil } case *ast.SwitchStmt: // Don't annotate an empty switch - creates a syntax error. if n.Body == nil || len(n.Body.List) == 0 { return nil } } return f } // unquote returns the unquoted string. func unquote(s string) string { t, err := strconv.Unquote(s) if err != nil { log.Fatalf("cover: improperly quoted string %q\n", s) } return t } // addImport adds an import for the specified path, if one does not already exist, and returns // the local package name. func (f *File) addImport(path string) string { // Does the package already import it? for _, s := range f.astFile.Imports { if unquote(s.Path.Value) == path { return s.Name.Name } } newImport := &ast.ImportSpec{ Name: ast.NewIdent(atomicPackageName), Path: &ast.BasicLit{ Kind: token.STRING, Value: fmt.Sprintf("%q", path), }, } impDecl := &ast.GenDecl{ Tok: token.IMPORT, Specs: []ast.Spec{ newImport, }, } // Make the new import the first Decl in the file. astFile := f.astFile astFile.Decls = append(astFile.Decls, nil) copy(astFile.Decls[1:], astFile.Decls[0:]) astFile.Decls[0] = impDecl astFile.Imports = append(astFile.Imports, newImport) // Now refer to the package, just in case it ends up unused. // That is, append to the end of the file the declaration // var _ = _cover_atomic_.AddUint32 reference := &ast.GenDecl{ Tok: token.VAR, Specs: []ast.Spec{ &ast.ValueSpec{ Names: []*ast.Ident{ ast.NewIdent("_"), }, Values: []ast.Expr{ &ast.SelectorExpr{ X: ast.NewIdent(atomicPackageName), Sel: ast.NewIdent("AddUint32"), }, }, }, }, } astFile.Decls = append(astFile.Decls, reference) return atomicPackageName } func cover(name string) { fs := token.NewFileSet() f, err := os.Open(name) if err != nil { log.Fatalf("cover: %s: %s", name, err) } defer f.Close() data, err := ioutil.ReadAll(f) if err != nil { log.Fatalf("cover: %s: %s", name, err) } parsedFile, err := parser.ParseFile(fs, name, bytes.NewReader(data), 0) if err != nil { log.Fatalf("cover: %s: %s", name, err) } file := &File{ fset: fs, name: name, astFile: parsedFile, } if *mode == "atomic" { file.atomicPkg = file.addImport(atomicPackagePath) } ast.Walk(file, file.astFile) fd := os.Stdout if *output != "" { var err error fd, err = os.Create(*output) if err != nil { log.Fatalf("cover: %s", err) } } file.print(fd) // After printing the source tree, add some declarations for the counters etc. // We could do this by adding to the tree, but it's easier just to print the text. file.addVariables(fd) } func (f *File) print(w io.Writer) { printer.Fprint(w, f.fset, f.astFile) } // intLiteral returns an ast.BasicLit representing the integer value. func (f *File) intLiteral(i int) *ast.BasicLit { node := &ast.BasicLit{ Kind: token.INT, Value: fmt.Sprint(i), } return node } // index returns an ast.BasicLit representing the number of counters present. func (f *File) index() *ast.BasicLit { return f.intLiteral(len(f.blocks)) } // setCounterStmt returns the expression: __count[23] = 1. func setCounterStmt(f *File, counter ast.Expr) ast.Stmt { return &ast.AssignStmt{ Lhs: []ast.Expr{counter}, Tok: token.ASSIGN, Rhs: []ast.Expr{f.intLiteral(1)}, } } // incCounterStmt returns the expression: __count[23]++. func incCounterStmt(f *File, counter ast.Expr) ast.Stmt { return &ast.IncDecStmt{ X: counter, Tok: token.INC, } } // atomicCounterStmt returns the expression: atomic.AddUint32(&__count[23], 1) func atomicCounterStmt(f *File, counter ast.Expr) ast.Stmt { return &ast.ExprStmt{ X: &ast.CallExpr{ Fun: &ast.SelectorExpr{ X: ast.NewIdent(f.atomicPkg), Sel: ast.NewIdent("AddUint32"), }, Args: []ast.Expr{&ast.UnaryExpr{ Op: token.AND, X: counter, }, f.intLiteral(1), }, }, } } // newCounter creates a new counter expression of the appropriate form. func (f *File) newCounter(start, end token.Pos, numStmt int) ast.Stmt { counter := &ast.IndexExpr{ X: &ast.SelectorExpr{ X: ast.NewIdent(*varVar), Sel: ast.NewIdent("Count"), }, Index: f.index(), } stmt := counterStmt(f, counter) f.blocks = append(f.blocks, Block{start, end, numStmt}) return stmt } // addCounters takes a list of statements and adds counters to the beginning of // each basic block at the top level of that list. For instance, given // // S1 // if cond { // S2 // } // S3 // // counters will be added before S1 and before S3. The block containing S2 // will be visited in a separate call. // TODO: Nested simple blocks get unecessary (but correct) counters func (f *File) addCounters(pos, blockEnd token.Pos, list []ast.Stmt, extendToClosingBrace bool) []ast.Stmt { // Special case: make sure we add a counter to an empty block. Can't do this below // or we will add a counter to an empty statement list after, say, a return statement. if len(list) == 0 { return []ast.Stmt{f.newCounter(pos, blockEnd, 0)} } // We have a block (statement list), but it may have several basic blocks due to the // appearance of statements that affect the flow of control. var newList []ast.Stmt for { // Find first statement that affects flow of control (break, continue, if, etc.). // It will be the last statement of this basic block. var last int end := blockEnd for last = 0; last < len(list); last++ { end = f.statementBoundary(list[last]) if f.endsBasicSourceBlock(list[last]) { extendToClosingBrace = false // Block is broken up now. last++ break } } if extendToClosingBrace { end = blockEnd } if pos != end { // Can have no source to cover if e.g. blocks abut. newList = append(newList, f.newCounter(pos, end, last)) } newList = append(newList, list[0:last]...) list = list[last:] if len(list) == 0 { break } pos = list[0].Pos() } return newList } // statementBoundary finds the location in s that terminates the current basic // block in the source. func (f *File) statementBoundary(s ast.Stmt) token.Pos { // Control flow statements are easy. switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return s.Lbrace case *ast.IfStmt: return s.Body.Lbrace case *ast.ForStmt: return s.Body.Lbrace case *ast.LabeledStmt: return f.statementBoundary(s.Stmt) case *ast.RangeStmt: return s.Body.Lbrace case *ast.SwitchStmt: return s.Body.Lbrace case *ast.SelectStmt: return s.Body.Lbrace case *ast.TypeSwitchStmt: return s.Body.Lbrace } // If not a control flow statement, it is a declaration, expression, call, etc. and it may have a function literal. // If it does, that's tricky because we want to exclude the body of the function from this block. // Draw a line at the start of the body of the first function literal we find. // TODO: what if there's more than one? Probably doesn't matter much. var literal funcLitFinder ast.Walk(&literal, s) if literal.found() { return token.Pos(literal) } return s.End() } // endsBasicSourceBlock reports whether s changes the flow of control: break, if, etc., // or if it's just problematic, for instance contains a function literal, which will complicate // accounting due to the block-within-an expression. func (f *File) endsBasicSourceBlock(s ast.Stmt) bool { switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return true case *ast.BranchStmt: return true case *ast.ForStmt: return true case *ast.IfStmt: return true case *ast.LabeledStmt: return f.endsBasicSourceBlock(s.Stmt) case *ast.RangeStmt: return true case *ast.SwitchStmt: return true case *ast.SelectStmt: return true case *ast.TypeSwitchStmt: return true } var literal funcLitFinder ast.Walk(&literal, s) return literal.found() } // funcLitFinder implements the ast.Visitor pattern to find the location of any // function literal in a subtree. type funcLitFinder token.Pos func (f *funcLitFinder) Visit(node ast.Node) (w ast.Visitor) { if f.found() { return nil // Prune search. } switch n := node.(type) { case *ast.FuncLit: *f = funcLitFinder(n.Body.Lbrace) return nil // Prune search. } return f } func (f *funcLitFinder) found() bool { return token.Pos(*f) != token.NoPos } // Sort interface for []block1; used for self-check in addVariables. type block1 struct { Block index int } type blockSlice []block1 func (b blockSlice) Len() int { return len(b) } func (b blockSlice) Less(i, j int) bool { return b[i].startByte < b[j].startByte } func (b blockSlice) Swap(i, j int) { b[i], b[j] = b[j], b[i] } // addVariables adds to the end of the file the declarations to set up the counter and position variables. func (f *File) addVariables(w io.Writer) { // Self-check: Verify that the instrumented basic blocks are disjoint. t := make([]block1, len(f.blocks)) for i := range f.blocks { t[i].Block = f.blocks[i] t[i].index = i } sort.Sort(blockSlice(t)) for i := 1; i < len(t); i++ { if t[i-1].endByte > t[i].startByte { fmt.Fprintf(os.Stderr, "cover: internal error: block %d overlaps block %d\n", t[i-1].index, t[i].index) fmt.Fprintf(os.Stderr, "\t%s:#%d,#%d %s:#%d,#%d\n", f.name, t[i-1].startByte, t[i-1].endByte, f.name, t[i].startByte, t[i].endByte) } } // Declare the coverage struct as a package-level variable. fmt.Fprintf(w, "\nvar %s = struct {\n", *varVar) fmt.Fprintf(w, "\tCount [%d]uint32\n", len(f.blocks)) fmt.Fprintf(w, "\tPos [3 * %d]uint32\n", len(f.blocks)) fmt.Fprintf(w, "\tNumStmt [%d]uint16\n", len(f.blocks)) fmt.Fprintf(w, "} {\n") // Initialize the position array field. fmt.Fprintf(w, "\tPos: [3 * %d]uint32{\n", len(f.blocks)) // A nice long list of positions. Each position is encoded as follows to reduce size: // - 32-bit starting line number // - 32-bit ending line number // - (16 bit ending column number << 16) | (16-bit starting column number). for i, block := range f.blocks { start := f.fset.Position(block.startByte) end := f.fset.Position(block.endByte) fmt.Fprintf(w, "\t\t%d, %d, %#x, // %d\n", start.Line, end.Line, (end.Column&0xFFFF)<<16|(start.Column&0xFFFF), i) } // Close the position array. fmt.Fprintf(w, "\t},\n") // Initialize the position array field. fmt.Fprintf(w, "\tNumStmt: [%d]uint16{\n", len(f.blocks)) // A nice long list of statements-per-block, so we can give a conventional // valuation of "percent covered". To save space, it's a 16-bit number, so we // clamp it if it overflows - won't matter in practice. for i, block := range f.blocks { n := block.numStmt if n > 1<<16-1 { n = 1<<16 - 1 } fmt.Fprintf(w, "\t\t%d, // %d\n", n, i) } // Close the statements-per-block array. fmt.Fprintf(w, "\t},\n") // Close the struct initialization. fmt.Fprintf(w, "}\n") }