// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" #include "../../cmd/ld/textflag.h" TEXT _rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVL argc+0(FP), AX MOVL argv+4(FP), BX MOVL SP, CX SUBL $128, SP // plenty of scratch ANDL $~15, CX MOVL CX, SP MOVL AX, 16(SP) MOVL BX, 24(SP) // create istack out of the given (operating system) stack. MOVL $runtime·g0(SB), DI LEAL (-64*1024+104)(SP), DI MOVL BX, g_stackguard(DI) MOVL BX, g_stackguard0(DI) MOVL SP, g_stackbase(DI) // find out information about the processor we're on MOVQ $0, AX CPUID CMPQ AX, $0 JE nocpuinfo MOVQ $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: needtls: LEAL runtime·tls0(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·tls0(SB), AX CMPQ AX, $0x123 JEQ 2(PC) MOVL AX, 0 // abort ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAL runtime·g0(SB), CX MOVL CX, g(BX) LEAL runtime·m0(SB), AX MOVL AX, m(BX) // save m->g0 = g0 MOVL CX, m_g0(AX) CLD // convention is D is always left cleared CALL runtime·check(SB) MOVL 16(SP), AX // copy argc MOVL AX, 0(SP) MOVL 24(SP), AX // copy argv MOVL AX, 4(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·hashinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program MOVL $runtime·main·f(SB), AX // entry MOVL $0, 0(SP) MOVL AX, 4(SP) ARGSIZE(8) CALL runtime·newproc(SB) ARGSIZE(-1) // start this M CALL runtime·mstart(SB) MOVL $0xf1, 0xf1 // crash RET DATA runtime·main·f+0(SB)/4,$runtime·main(SB) GLOBL runtime·main·f(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 INT $3 RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // No per-thread init. RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-4 MOVL b+0(FP), AX // gobuf LEAL b+0(FP), BX // caller's SP MOVL BX, gobuf_sp(AX) MOVL 0(SP), BX // caller's PC MOVL BX, gobuf_pc(AX) MOVL $0, gobuf_ctxt(AX) MOVQ $0, gobuf_ret(AX) get_tls(CX) MOVL g(CX), BX MOVL BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $0-4 MOVL b+0(FP), BX // gobuf MOVL gobuf_g(BX), DX MOVL 0(DX), CX // make sure g != nil get_tls(CX) MOVL DX, g(CX) MOVL gobuf_sp(BX), SP // restore SP MOVL gobuf_ctxt(BX), DX MOVQ gobuf_ret(BX), AX MOVL $0, gobuf_sp(BX) // clear to help garbage collector MOVQ $0, gobuf_ret(BX) MOVL $0, gobuf_ctxt(BX) MOVL gobuf_pc(BX), BX JMP BX // void mcall(void (*fn)(G*)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI get_tls(CX) MOVL g(CX), AX // save state in g->sched MOVL 0(SP), BX // caller's PC MOVL BX, (g_sched+gobuf_pc)(AX) LEAL fn+0(FP), BX // caller's SP MOVL BX, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVL m(CX), BX MOVL m_g0(BX), SI CMPL SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVL $runtime·badmcall(SB), AX JMP AX MOVL SI, g(CX) // g = m->g0 MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHQ AX ARGSIZE(8) CALL DI POPQ AX MOVL $runtime·badmcall2(SB), AX JMP AX RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already done get_tls(CX); MOVQ m(CX), BX. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). MOVL m_g0(BX), SI CMPL g(CX), SI JNE 2(PC) MOVL 0, AX // Called from f. // Set m->morebuf to f's caller. MOVL 8(SP), AX // f's caller's PC MOVL AX, (m_morebuf+gobuf_pc)(BX) LEAL 16(SP), AX // f's caller's SP MOVL AX, (m_morebuf+gobuf_sp)(BX) MOVL AX, m_moreargp(BX) get_tls(CX) MOVL g(CX), SI MOVL SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVL 0(SP), AX // f's PC MOVL AX, (g_sched+gobuf_pc)(SI) MOVL SI, (g_sched+gobuf_g)(SI) LEAL 8(SP), AX // f's SP MOVL AX, (g_sched+gobuf_sp)(SI) MOVL DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVL m_g0(BX), BX MOVL BX, g(CX) MOVL (g_sched+gobuf_sp)(BX), SP CALL runtime·newstack(SB) MOVL $0, 0x1003 // crash if newstack returns RET // Called from panic. Mimics morestack, // reuses stack growth code to create a frame // with the desired args running the desired function. // // func call(fn *byte, arg *byte, argsize uint32). TEXT runtime·newstackcall(SB), NOSPLIT, $0-20 get_tls(CX) MOVL m(CX), BX // Save our caller's state as the PC and SP to // restore when returning from f. MOVL 0(SP), AX // our caller's PC MOVL AX, (m_morebuf+gobuf_pc)(BX) LEAL 8(SP), AX // our caller's SP MOVL AX, (m_morebuf+gobuf_sp)(BX) MOVL g(CX), AX MOVL AX, (m_morebuf+gobuf_g)(BX) // Save our own state as the PC and SP to restore // if this goroutine needs to be restarted. MOVL $runtime·newstackcall(SB), DI MOVL DI, (g_sched+gobuf_pc)(AX) MOVL SP, (g_sched+gobuf_sp)(AX) // Set up morestack arguments to call f on a new stack. // We set f's frame size to 1, as a hint to newstack // that this is a call from runtime·newstackcall. // If it turns out that f needs a larger frame than // the default stack, f's usual stack growth prolog will // allocate a new segment (and recopy the arguments). MOVL 8(SP), AX // fn MOVL 12(SP), DX // arg frame MOVL 16(SP), CX // arg size MOVQ AX, m_cret(BX) // f's PC MOVL DX, m_moreargp(BX) // argument frame pointer MOVL CX, m_moreargsize(BX) // f's argument size MOVL $1, m_moreframesize(BX) // f's frame size // Call newstack on m->g0's stack. MOVL m_g0(BX), BX get_tls(CX) MOVL BX, g(CX) MOVL (g_sched+gobuf_sp)(BX), SP CALL runtime·newstack(SB) MOVL $0, 0x1103 // crash if newstack returns RET // reflect·call: call a function with the given argument list // func call(f *FuncVal, arg *byte, argsize uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPL CX, $MAXSIZE; \ JA 3(PC); \ MOVL $runtime·NAME(SB), AX; \ JMP AX // Note: can't just "JMP runtime·NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-20 MOVLQZX argsize+8(FP), CX DISPATCH(call16, 16) DISPATCH(call32, 32) DISPATCH(call64, 64) DISPATCH(call128, 128) DISPATCH(call256, 256) DISPATCH(call512, 512) DISPATCH(call1024, 1024) DISPATCH(call2048, 2048) DISPATCH(call4096, 4096) DISPATCH(call8192, 8192) DISPATCH(call16384, 16384) DISPATCH(call32768, 32768) DISPATCH(call65536, 65536) DISPATCH(call131072, 131072) DISPATCH(call262144, 262144) DISPATCH(call524288, 524288) DISPATCH(call1048576, 1048576) DISPATCH(call2097152, 2097152) DISPATCH(call4194304, 4194304) DISPATCH(call8388608, 8388608) DISPATCH(call16777216, 16777216) DISPATCH(call33554432, 33554432) DISPATCH(call67108864, 67108864) DISPATCH(call134217728, 134217728) DISPATCH(call268435456, 268435456) DISPATCH(call536870912, 536870912) DISPATCH(call1073741824, 1073741824) MOVL $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT runtime·NAME(SB), WRAPPER, $MAXSIZE-16; \ /* copy arguments to stack */ \ MOVL argptr+4(FP), SI; \ MOVL argsize+8(FP), CX; \ MOVL SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVL f+0(FP), DX; \ MOVL (DX), AX; \ CALL AX; \ /* copy return values back */ \ MOVL argptr+4(FP), DI; \ MOVL argsize+8(FP), CX; \ MOVL retoffset+12(FP), BX; \ MOVL SP, SI; \ ADDL BX, DI; \ ADDL BX, SI; \ SUBL BX, CX; \ REP;MOVSB; \ RET CALLFN(call16, 16) CALLFN(call32, 32) CALLFN(call64, 64) CALLFN(call128, 128) CALLFN(call256, 256) CALLFN(call512, 512) CALLFN(call1024, 1024) CALLFN(call2048, 2048) CALLFN(call4096, 4096) CALLFN(call8192, 8192) CALLFN(call16384, 16384) CALLFN(call32768, 32768) CALLFN(call65536, 65536) CALLFN(call131072, 131072) CALLFN(call262144, 262144) CALLFN(call524288, 524288) CALLFN(call1048576, 1048576) CALLFN(call2097152, 2097152) CALLFN(call4194304, 4194304) CALLFN(call8388608, 8388608) CALLFN(call16777216, 16777216) CALLFN(call33554432, 33554432) CALLFN(call67108864, 67108864) CALLFN(call134217728, 134217728) CALLFN(call268435456, 268435456) CALLFN(call536870912, 536870912) CALLFN(call1073741824, 1073741824) // Return point when leaving stack. // // Lessstack can appear in stack traces for the same reason // as morestack; in that context, it has 0 arguments. TEXT runtime·lessstack(SB), NOSPLIT, $0-0 // Save return value in m->cret get_tls(CX) MOVL m(CX), BX MOVQ AX, m_cret(BX) // MOVQ, to save all 64 bits // Call oldstack on m->g0's stack. MOVL m_g0(BX), BX MOVL BX, g(CX) MOVL (g_sched+gobuf_sp)(BX), SP CALL runtime·oldstack(SB) MOVL $0, 0x1004 // crash if oldstack returns RET // morestack trampolines TEXT runtime·morestack00(SB),NOSPLIT,$0 get_tls(CX) MOVL m(CX), BX MOVQ $0, AX MOVQ AX, m_moreframesize(BX) MOVL $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack01(SB),NOSPLIT,$0 get_tls(CX) MOVL m(CX), BX SHLQ $32, AX MOVQ AX, m_moreframesize(BX) MOVL $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack10(SB),NOSPLIT,$0 get_tls(CX) MOVL m(CX), BX MOVLQZX AX, AX MOVQ AX, m_moreframesize(BX) MOVL $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack11(SB),NOSPLIT,$0 get_tls(CX) MOVL m(CX), BX MOVQ AX, m_moreframesize(BX) MOVL $runtime·morestack(SB), AX JMP AX // subcases of morestack01 // with const of 8,16,...48 TEXT runtime·morestack8(SB),NOSPLIT,$0 MOVQ $1, R8 MOVL $morestack<>(SB), AX JMP AX TEXT runtime·morestack16(SB),NOSPLIT,$0 MOVQ $2, R8 MOVL $morestack<>(SB), AX JMP AX TEXT runtime·morestack24(SB),NOSPLIT,$0 MOVQ $3, R8 MOVL $morestack<>(SB), AX JMP AX TEXT runtime·morestack32(SB),NOSPLIT,$0 MOVQ $4, R8 MOVL $morestack<>(SB), AX JMP AX TEXT runtime·morestack40(SB),NOSPLIT,$0 MOVQ $5, R8 MOVL $morestack<>(SB), AX JMP AX TEXT runtime·morestack48(SB),NOSPLIT,$0 MOVQ $6, R8 MOVL $morestack<>(SB), AX JMP AX TEXT morestack<>(SB),NOSPLIT,$0 get_tls(CX) MOVL m(CX), BX SHLQ $35, R8 MOVQ R8, m_moreframesize(BX) MOVL $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack00_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack00(SB) TEXT runtime·morestack01_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack01(SB) TEXT runtime·morestack10_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack10(SB) TEXT runtime·morestack11_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack11(SB) TEXT runtime·morestack8_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack8(SB) TEXT runtime·morestack16_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack16(SB) TEXT runtime·morestack24_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack24(SB) TEXT runtime·morestack32_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack32(SB) TEXT runtime·morestack40_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack40(SB) TEXT runtime·morestack48_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack48(SB) // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-12 MOVL val+0(FP), BX MOVL old+4(FP), AX MOVL new+8(FP), CX LOCK CMPXCHGL CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), NOSPLIT, $0-24 MOVL val+0(FP), BX MOVQ old+8(FP), AX MOVQ new+16(FP), CX LOCK CMPXCHGQ CX, 0(BX) JNZ cas64_fail MOVL $1, AX RET cas64_fail: MOVL $0, AX RET // bool casp(void **val, void *old, void *new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·casp(SB), NOSPLIT, $0-12 MOVL val+0(FP), BX MOVL old+4(FP), AX MOVL new+8(FP), CX LOCK CMPXCHGL CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), NOSPLIT, $0-8 MOVL val+0(FP), BX MOVL delta+4(FP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX RET TEXT runtime·xadd64(SB), NOSPLIT, $0-16 MOVL val+0(FP), BX MOVQ delta+8(FP), AX MOVQ AX, CX LOCK XADDQ AX, 0(BX) ADDQ CX, AX RET TEXT runtime·xchg(SB), NOSPLIT, $0-8 MOVL val+0(FP), BX MOVL new+4(FP), AX XCHGL AX, 0(BX) RET TEXT runtime·xchg64(SB), NOSPLIT, $0-16 MOVL val+0(FP), BX MOVQ new+8(FP), AX XCHGQ AX, 0(BX) RET TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL val+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep(SB), NOSPLIT, $0-8 MOVL ptr+0(FP), BX MOVL val+4(FP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore(SB), NOSPLIT, $0-8 MOVL ptr+0(FP), BX MOVL val+4(FP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16 MOVL ptr+0(FP), BX MOVQ val+8(FP), AX XCHGQ AX, 0(BX) RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16 MOVL fn+0(FP), DX MOVL callersp+4(FP), BX LEAL -8(BX), SP // caller sp after CALL SUBL $5, (SP) // return to CALL again MOVL 0(DX), BX JMP BX // but first run the deferred function // asmcgocall(void(*fn)(void*), void *arg) // Not implemented. TEXT runtime·asmcgocall(SB),NOSPLIT,$0-8 MOVL 0, AX RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Not implemented. TEXT runtime·cgocallback(SB),NOSPLIT,$0-12 MOVL 0, AX RET // void setmg(M*, G*); set m and g. for use by needm. // Not implemented. TEXT runtime·setmg(SB), NOSPLIT, $0-8 MOVL 0, AX RET // check that SP is in range [g->stackbase, g->stackguard) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVL g(CX), AX CMPL g_stackbase(AX), SP JHI 2(PC) MOVL 0, AX CMPL SP, g_stackguard(AX) JHI 2(PC) MOVL 0, AX RET TEXT runtime·memclr(SB),NOSPLIT,$0-8 MOVL addr+0(FP), DI MOVL count+4(FP), CX MOVQ CX, BX ANDQ $7, BX SHRQ $3, CX MOVQ $0, AX CLD REP STOSQ MOVQ BX, CX REP STOSB RET TEXT runtime·getcallerpc(SB),NOSPLIT,$0-8 MOVL x+0(FP),AX // addr of first arg MOVL -8(AX),AX // get calling pc RET TEXT runtime·setcallerpc(SB),NOSPLIT,$0-16 MOVL x+0(FP),AX // addr of first arg MOVL pc+4(FP), BX // pc to set MOVQ BX, -8(AX) // set calling pc RET TEXT runtime·getcallersp(SB),NOSPLIT,$0-8 MOVL sp+0(FP), AX RET // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-0 RDTSC SHLQ $32, DX ADDQ DX, AX RET TEXT runtime·stackguard(SB),NOSPLIT,$0-16 MOVL SP, DX MOVL DX, sp+0(FP) get_tls(CX) MOVL g(CX), BX MOVL g_stackguard(BX), DX MOVL DX, limit+4(FP) RET GLOBL runtime·tls0(SB), $64 // hash function using AES hardware instructions // For now, our one amd64p32 system (NaCl) does not // support using AES instructions, so have not bothered to // write the implementations. Can copy and adjust the ones // in asm_amd64.s when the time comes. TEXT runtime·aeshash(SB),NOSPLIT,$0-24 RET TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24 RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-24 RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-24 RET TEXT runtime·memeq(SB),NOSPLIT,$0-12 MOVL a+0(FP), SI MOVL b+4(FP), DI MOVL count+8(FP), BX JMP runtime·memeqbody(SB) // a in SI // b in DI // count in BX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 XORQ AX, AX CMPQ BX, $8 JB small // 64 bytes at a time using xmm registers hugeloop: CMPQ BX, $64 JB bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffff JEQ hugeloop RET // 8 bytes at a time using 64-bit register bigloop: CMPQ BX, $8 JBE leftover MOVQ (SI), CX MOVQ (DI), DX ADDQ $8, SI ADDQ $8, DI SUBQ $8, BX CMPQ CX, DX JEQ bigloop RET // remaining 0-8 bytes leftover: ADDQ BX, SI ADDQ BX, DI MOVQ -8(SI), CX MOVQ -8(DI), DX CMPQ CX, DX SETEQ AX RET small: CMPQ BX, $0 JEQ equal LEAQ 0(BX*8), CX NEGQ CX CMPB SI, $0xf8 JA si_high // load at SI won't cross a page boundary. MOVQ (SI), SI JMP si_finish si_high: // address ends in 11111xxx. Load up to bytes we want, move to correct position. MOVQ BX, DX ADDQ SI, DX MOVQ -8(DX), SI SHRQ CX, SI si_finish: // same for DI. CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ BX, DX ADDQ DI, DX MOVQ -8(DX), DI SHRQ CX, DI di_finish: SUBQ SI, DI SHLQ CX, DI equal: SETEQ AX RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-20 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+8(FP), DI MOVL s2+12(FP), DX CALL runtime·cmpbody(SB) MOVL AX, res+16(FP) RET TEXT bytes·Compare(SB),NOSPLIT,$0-28 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+12(FP), DI MOVL s2+16(FP), DX CALL runtime·cmpbody(SB) MOVQ AX, res+24(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // output: // AX = 1/0/-1 TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 CMPQ SI, DI JEQ cmp_allsame CMPQ BX, DX MOVQ DX, R8 CMOVQLT BX, R8 // R8 = min(alen, blen) = # of bytes to compare CMPQ R8, $8 JB cmp_small cmp_loop: CMPQ R8, $16 JBE cmp_0through16 MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX // convert EQ to NE JNE cmp_diff16 // branch if at least one byte is not equal ADDQ $16, SI ADDQ $16, DI SUBQ $16, R8 JMP cmp_loop // AX = bit mask of differences cmp_diff16: BSFQ AX, BX // index of first byte that differs XORQ AX, AX ADDQ BX, SI MOVB (SI), CX ADDQ BX, DI CMPB CX, (DI) SETHI AX LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 RET // 0 through 16 bytes left, alen>=8, blen>=8 cmp_0through16: CMPQ R8, $8 JBE cmp_0through8 MOVQ (SI), AX MOVQ (DI), CX CMPQ AX, CX JNE cmp_diff8 cmp_0through8: ADDQ R8, SI ADDQ R8, DI MOVQ -8(SI), AX MOVQ -8(DI), CX CMPQ AX, CX JEQ cmp_allsame // AX and CX contain parts of a and b that differ. cmp_diff8: BSWAPQ AX // reverse order of bytes BSWAPQ CX XORQ AX, CX BSRQ CX, CX // index of highest bit difference SHRQ CX, AX // move a's bit to bottom ANDQ $1, AX // mask bit LEAQ -1(AX*2), AX // 1/0 => +1/-1 RET // 0-7 bytes in common cmp_small: LEAQ (R8*8), CX // bytes left -> bits left NEGQ CX // - bits lift (== 64 - bits left mod 64) JEQ cmp_allsame // load bytes of a into high bytes of AX CMPB SI, $0xf8 JA cmp_si_high MOVQ (SI), SI JMP cmp_si_finish cmp_si_high: ADDQ R8, SI MOVQ -8(SI), SI SHRQ CX, SI cmp_si_finish: SHLQ CX, SI // load bytes of b in to high bytes of BX CMPB DI, $0xf8 JA cmp_di_high MOVQ (DI), DI JMP cmp_di_finish cmp_di_high: ADDQ R8, DI MOVQ -8(DI), DI SHRQ CX, DI cmp_di_finish: SHLQ CX, DI BSWAPQ SI // reverse order of bytes BSWAPQ DI XORQ SI, DI // find bit differences JEQ cmp_allsame BSRQ DI, CX // index of highest bit difference SHRQ CX, SI // move a's bit to bottom ANDQ $1, SI // mask bit LEAQ -1(SI*2), AX // 1/0 => +1/-1 RET cmp_allsame: XORQ AX, AX XORQ CX, CX CMPQ BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAQ -1(CX)(AX*2), AX // 1,0,-1 result RET TEXT bytes·IndexByte(SB),NOSPLIT,$0 MOVL s+0(FP), SI MOVL s_len+4(FP), BX MOVB c+12(FP), AL CALL runtime·indexbytebody(SB) MOVL AX, ret+16(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0 MOVL s+0(FP), SI MOVL s_len+4(FP), BX MOVB c+8(FP), AL CALL runtime·indexbytebody(SB) MOVL AX, ret+16(FP) RET // input: // SI: data // BX: data len // AL: byte sought // output: // AX TEXT runtime·indexbytebody(SB),NOSPLIT,$0 MOVL SI, DI CMPL BX, $16 JLT indexbyte_small // round up to first 16-byte boundary TESTL $15, SI JZ aligned MOVL SI, CX ANDL $~15, CX ADDL $16, CX // search the beginning SUBL SI, CX REPN; SCASB JZ success // DI is 16-byte aligned; get ready to search using SSE instructions aligned: // round down to last 16-byte boundary MOVL BX, R11 ADDL SI, R11 ANDL $~15, R11 // shuffle X0 around so that each byte contains c MOVD AX, X0 PUNPCKLBW X0, X0 PUNPCKLBW X0, X0 PSHUFL $0, X0, X0 JMP condition sse: // move the next 16-byte chunk of the buffer into X1 MOVO (DI), X1 // compare bytes in X0 to X1 PCMPEQB X0, X1 // take the top bit of each byte in X1 and put the result in DX PMOVMSKB X1, DX TESTL DX, DX JNZ ssesuccess ADDL $16, DI condition: CMPL DI, R11 JLT sse // search the end MOVL SI, CX ADDL BX, CX SUBL R11, CX // if CX == 0, the zero flag will be set and we'll end up // returning a false success JZ failure REPN; SCASB JZ success failure: MOVL $-1, AX RET // handle for lengths < 16 indexbyte_small: MOVL BX, CX REPN; SCASB JZ success MOVL $-1, AX RET // we've found the chunk containing the byte // now just figure out which specific byte it is ssesuccess: // get the index of the least significant set bit BSFW DX, DX SUBL SI, DI ADDL DI, DX MOVL DX, AX RET success: SUBL SI, DI SUBL $1, DI MOVL DI, AX RET TEXT bytes·Equal(SB),NOSPLIT,$0-25 MOVL a_len+4(FP), BX MOVL b_len+16(FP), CX XORL AX, AX CMPL BX, CX JNE eqret MOVL a+0(FP), SI MOVL b+12(FP), DI CALL runtime·memeqbody(SB) eqret: MOVB AX, ret+24(FP) RET TEXT runtime·timenow(SB), NOSPLIT, $0-0 JMP time·now(SB)