// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* Package fmt implements formatted I/O with functions analogous to C's printf. The format 'verbs' are derived from C's but are simpler. The verbs: General: %v the value in a default format. when printing structs, the plus flag (%+v) adds field names %#v a Go-syntax representation of the value %T a Go-syntax representation of the type of the value Boolean: %t the word true or false Integer: %b base 2 %c the character represented by the corresponding Unicode code point %d base 10 %o base 8 %x base 16, with lower-case letters for a-f %X base 16, with upper-case letters for A-F Floating-point and complex constituents: %e scientific notation, e.g. -1234.456e+78 %E scientific notation, e.g. -1234.456E+78 %f decimal point but no exponent, e.g. 123.456 %g whichever of %e or %f produces more compact output %G whichever of %E or %f produces more compact output String and slice of bytes: %s the uninterpreted bytes of the string or slice %q a double-quoted string safely escaped with Go syntax %x base 16 notation with two characters per byte Pointer: %p base 16 notation, with leading 0x There is no 'u' flag. Integers are printed unsigned if they have unsigned type. Similarly, there is no need to specify the size of the operand (int8, int64). For numeric values, the width and precision flags control formatting; width sets the width of the field, precision the number of places after the decimal, if appropriate. The format %6.2f prints 123.45. The width of a field is the number of Unicode code points in the string. This differs from C's printf where the field width is the number of bytes. Other flags: + always print a sign for numeric values - pad with spaces on the right rather than the left (left-justify the field) # alternate format: add leading 0 for octal (%#o), 0x for hex (%#x); suppress 0x for %p (%#p); print a raw (backquoted) string if possible for %q (%#q) ' ' (space) leave a space for elided sign in numbers (% d); put spaces between bytes printing strings or slices in hex (% x) 0 pad with leading zeros rather than spaces For each Printf-like function, there is also a Print function that takes no format and is equivalent to saying %v for every operand. Another variant Println inserts blanks between operands and appends a newline. Regardless of the verb, if an operand is an interface value, the internal concrete value is used, not the interface itself. Thus: var i interface{} = 23; fmt.Printf("%v\n", i); will print 23. If an operand implements interface Formatter, that interface can be used for fine control of formatting. If an operand implements method String() string that method will be used for %v, %s, or Print etc. */ package fmt import ( "bytes" "io" "os" "reflect" "utf8" ) // Some constants in the form of bytes, to avoid string overhead. // Needlessly fastidious, I suppose. var ( trueBytes = []byte("true") falseBytes = []byte("false") commaSpaceBytes = []byte(", ") nilAngleBytes = []byte("") nilParenBytes = []byte("(nil)") nilBytes = []byte("nil") mapBytes = []byte("map[") missingBytes = []byte("missing") extraBytes = []byte("?(extra ") irparenBytes = []byte("i)") ) // State represents the printer state passed to custom formatters. // It provides access to the io.Writer interface plus information about // the flags and options for the operand's format specifier. type State interface { // Write is the function to call to emit formatted output to be printed. Write(b []byte) (ret int, err os.Error) // Width returns the value of the width option and whether it has been set. Width() (wid int, ok bool) // Precision returns the value of the precision option and whether it has been set. Precision() (prec int, ok bool) // Flag returns whether the flag c, a character, has been set. Flag(int) bool } // Formatter is the interface implemented by values with a custom formatter. // The implementation of Format may call Sprintf or Fprintf(f) etc. // to generate its output. type Formatter interface { Format(f State, c int) } // Stringer is implemented by any value that has a String method(), // which defines the ``native'' format for that value. // The String method is used to print values passed as an operand // to a %s or %v format or to an unformatted printer such as Print. type Stringer interface { String() string } // GoStringer is implemented by any value that has a GoString() method, // which defines the Go syntax for that value. // The GoString method is used to print values passed as an operand // to a %#v format. type GoStringer interface { GoString() string } // getter is implemented by any value that has a Get() method, // which means the object contains a pointer. Used by %p. type getter interface { Get() uintptr } const allocSize = 32 type pp struct { n int buf bytes.Buffer runeBuf [utf8.UTFMax]byte fmt fmt } // A leaky bucket of reusable pp structures. var ppFree = make(chan *pp, 100) // Allocate a new pp struct. Probably can grab the previous one from ppFree. func newPrinter() *pp { p, ok := <-ppFree if !ok { p = new(pp) } p.fmt.init(&p.buf) return p } // Save used pp structs in ppFree; avoids an allocation per invocation. func (p *pp) free() { // Don't hold on to pp structs with large buffers. if cap(p.buf.Bytes()) > 1024 { return } p.buf.Reset() _ = ppFree <- p } func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } func (p *pp) Flag(b int) bool { switch b { case '-': return p.fmt.minus case '+': return p.fmt.plus case '#': return p.fmt.sharp case ' ': return p.fmt.space case '0': return p.fmt.zero } return false } func (p *pp) add(c int) { if c < utf8.RuneSelf { p.buf.WriteByte(byte(c)) } else { w := utf8.EncodeRune(c, &p.runeBuf) p.buf.Write(p.runeBuf[0:w]) } } // Implement Write so we can call Fprintf on a pp (through State), for // recursive use in custom verbs. func (p *pp) Write(b []byte) (ret int, err os.Error) { return p.buf.Write(b) } // These routines end in 'f' and take a format string. // Fprintf formats according to a format specifier and writes to w. func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) { p := newPrinter() p.doprintf(format, a) n64, error := p.buf.WriteTo(w) p.free() return int(n64), error } // Printf formats according to a format specifier and writes to standard output. func Printf(format string, a ...interface{}) (n int, errno os.Error) { n, errno = Fprintf(os.Stdout, format, a) return n, errno } // Sprintf formats according to a format specifier and returns the resulting string. func Sprintf(format string, a ...interface{}) string { p := newPrinter() p.doprintf(format, a) s := p.buf.String() p.free() return s } // These routines do not take a format string // Fprint formats using the default formats for its operands and writes to w. // Spaces are added between operands when neither is a string. func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) { p := newPrinter() p.doprint(a, false, false) n64, error := p.buf.WriteTo(w) p.free() return int(n64), error } // Print formats using the default formats for its operands and writes to standard output. // Spaces are added between operands when neither is a string. func Print(a ...interface{}) (n int, errno os.Error) { n, errno = Fprint(os.Stdout, a) return n, errno } // Sprint formats using the default formats for its operands and returns the resulting string. // Spaces are added between operands when neither is a string. func Sprint(a ...interface{}) string { p := newPrinter() p.doprint(a, false, false) s := p.buf.String() p.free() return s } // These routines end in 'ln', do not take a format string, // always add spaces between operands, and add a newline // after the last operand. // Fprintln formats using the default formats for its operands and writes to w. // Spaces are always added between operands and a newline is appended. func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) { p := newPrinter() p.doprint(a, true, true) n64, error := p.buf.WriteTo(w) p.free() return int(n64), error } // Println formats using the default formats for its operands and writes to standard output. // Spaces are always added between operands and a newline is appended. func Println(a ...interface{}) (n int, errno os.Error) { n, errno = Fprintln(os.Stdout, a) return n, errno } // Sprintln formats using the default formats for its operands and returns the resulting string. // Spaces are always added between operands and a newline is appended. func Sprintln(a ...interface{}) string { p := newPrinter() p.doprint(a, true, true) s := p.buf.String() p.free() return s } // Get the i'th arg of the struct value. // If the arg itself is an interface, return a value for // the thing inside the interface, not the interface itself. func getField(v *reflect.StructValue, i int) reflect.Value { val := v.Field(i) if i, ok := val.(*reflect.InterfaceValue); ok { if inter := i.Interface(); inter != nil { return reflect.NewValue(inter) } } return val } // Getters for the fields of the argument structure. func getBool(a interface{}) (val bool, ok bool) { // Is it a regular bool type? if b, ok := a.(bool); ok { return b, true } // Must be a renamed bool type. if b, ok := reflect.NewValue(a).(*reflect.BoolValue); ok { return b.Get(), true } return } func getInt(a interface{}) (val int64, signed, ok bool) { // Is it a predeclared integer type? switch i := a.(type) { case int: return int64(i), true, true case int8: return int64(i), true, true case int16: return int64(i), true, true case int32: return int64(i), true, true case int64: return i, true, true case uint: return int64(i), false, true case uint8: return int64(i), false, true case uint16: return int64(i), false, true case uint32: return int64(i), false, true case uint64: return int64(i), false, true case uintptr: return int64(i), false, true } // Must be a renamed integer type. switch i := reflect.NewValue(a).(type) { case *reflect.IntValue: return int64(i.Get()), true, true case *reflect.Int8Value: return int64(i.Get()), true, true case *reflect.Int16Value: return int64(i.Get()), true, true case *reflect.Int32Value: return int64(i.Get()), true, true case *reflect.Int64Value: return i.Get(), true, true case *reflect.UintValue: return int64(i.Get()), false, true case *reflect.Uint8Value: return int64(i.Get()), false, true case *reflect.Uint16Value: return int64(i.Get()), false, true case *reflect.Uint32Value: return int64(i.Get()), false, true case *reflect.Uint64Value: return int64(i.Get()), false, true case *reflect.UintptrValue: return int64(i.Get()), false, true } return } func getString(a interface{}) (val string, ok bool) { if a == nil { return "", ok } // Is it a regular string or []byte type? switch s := a.(type) { case string: return s, true case []byte: return string(s), true } // Must be a renamed string or []byte type. v := reflect.NewValue(a) if s, ok := v.(*reflect.StringValue); ok { return s.Get(), true } if bytes, ok := v.Interface().([]byte); ok { return string(bytes), true } return } var floatBits = reflect.Typeof(float(0)).Size() * 8 func getFloat32(a interface{}) (val float32, ok bool) { // Is it a regular floating-point type? switch f := a.(type) { case float32: return f, true case float: if floatBits == 32 { return float32(f), true } } // Must be a renamed floating-point type. switch f := reflect.NewValue(a).(type) { case *reflect.Float32Value: return float32(f.Get()), true case *reflect.FloatValue: if floatBits == 32 { return float32(f.Get()), true } } return } func getFloat64(a interface{}) (val float64, ok bool) { // Is it a regular floating-point type? switch f := a.(type) { case float64: return f, true case float: if floatBits == 64 { return float64(f), true } } // Must be a renamed floating-point type. switch f := reflect.NewValue(a).(type) { case *reflect.Float64Value: return float64(f.Get()), true case *reflect.FloatValue: if floatBits == 64 { return float64(f.Get()), true } } return } var complexBits = reflect.Typeof(complex(0i)).Size() * 8 func getComplex64(a interface{}) (val complex64, ok bool) { // Is it a regular complex type? switch c := a.(type) { case complex64: return c, true case complex: if complexBits == 64 { return complex64(c), true } } // Must be a renamed complex type. switch c := reflect.NewValue(a).(type) { case *reflect.Complex64Value: return complex64(c.Get()), true case *reflect.ComplexValue: if complexBits == 64 { return complex64(c.Get()), true } } return } func getComplex128(a interface{}) (val complex128, ok bool) { // Is it a regular complex type? switch c := a.(type) { case complex128: return c, true case complex: if complexBits == 128 { return complex128(c), true } } // Must be a renamed complex type. switch c := reflect.NewValue(a).(type) { case *reflect.Complex128Value: return complex128(c.Get()), true case *reflect.ComplexValue: if complexBits == 128 { return complex128(c.Get()), true } } return } // Convert ASCII to integer. n is 0 (and got is false) if no number present. func parsenum(s string, start, end int) (n int, got bool, newi int) { if start >= end { return 0, false, end } isnum := false num := 0 for '0' <= s[start] && s[start] <= '9' { num = num*10 + int(s[start]-'0') start++ isnum = true } return num, isnum, start } type uintptrGetter interface { Get() uintptr } func (p *pp) unknownType(v interface{}) { if v == nil { p.buf.Write(nilAngleBytes) return } p.buf.WriteByte('?') p.buf.WriteString(reflect.Typeof(v).String()) p.buf.WriteByte('?') } func (p *pp) printField(field interface{}, plus, sharp bool, depth int) (was_string bool) { if field != nil && depth >= 0 { switch { default: if stringer, ok := field.(Stringer); ok { p.buf.WriteString(stringer.String()) return false // this value is not a string } case sharp: if stringer, ok := field.(GoStringer); ok { p.buf.WriteString(stringer.GoString()) return false // this value is not a string } } } // Some types can be done without reflection. switch f := field.(type) { case bool: p.fmt.fmt_boolean(f) return false case float32: p.fmt.fmt_g32(f) return false case float64: p.fmt.fmt_g64(f) return false case float: if floatBits == 32 { p.fmt.fmt_g32(float32(f)) } else { p.fmt.fmt_g64(float64(f)) } return false case complex64: p.fmt.fmt_c64(f, 'g') return false case complex128: p.fmt.fmt_c128(f, 'g') return false case complex: if complexBits == 64 { p.fmt.fmt_c64(complex64(f), 'g') } else { p.fmt.fmt_c128(complex128(f), 'g') } return false case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, uintptr: v, signed, ok := getInt(field) if !ok { // cannot happen, but print something to be sure p.unknownType(f) } else { if signed { p.fmt.fmt_d64(v) } else { if sharp { p.fmt.sharp = true // turn on 0x p.fmt.fmt_ux64(uint64(v)) } else { p.fmt.fmt_ud64(uint64(v)) } } } return false case string: if sharp { p.fmt.fmt_q(f) } else { p.fmt.fmt_s(f) } return true } // Need to use reflection BigSwitch: switch f := reflect.NewValue(field).(type) { case *reflect.BoolValue: p.fmt.fmt_boolean(f.Get()) case *reflect.Float32Value: p.fmt.fmt_g32(f.Get()) case *reflect.Float64Value: p.fmt.fmt_g64(f.Get()) case *reflect.FloatValue: if floatBits == 32 { p.fmt.fmt_g32(float32(f.Get())) } else { p.fmt.fmt_g64(float64(f.Get())) } case *reflect.StringValue: if sharp { p.fmt.fmt_q(f.Get()) } else { p.fmt.fmt_s(f.Get()) was_string = true } case *reflect.MapValue: if sharp { p.buf.WriteString(f.Type().String()) p.buf.WriteByte('{') } else { p.buf.Write(mapBytes) } keys := f.Keys() for i, key := range keys { if i > 0 { if sharp { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } p.printField(key.Interface(), plus, sharp, depth+1) p.buf.WriteByte(':') p.printField(f.Elem(key).Interface(), plus, sharp, depth+1) } if sharp { p.buf.WriteByte('}') } else { p.buf.WriteByte(']') } case *reflect.StructValue: if sharp { p.buf.WriteString(reflect.Typeof(field).String()) } p.add('{') v := f t := v.Type().(*reflect.StructType) p.fmt.clearflags() // clear flags for p.printField for i := 0; i < v.NumField(); i++ { if i > 0 { if sharp { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } if plus || sharp { if f := t.Field(i); f.Name != "" { p.buf.WriteString(f.Name) p.buf.WriteByte(':') } } p.printField(getField(v, i).Interface(), plus, sharp, depth+1) } p.buf.WriteByte('}') case *reflect.InterfaceValue: value := f.Elem() if value == nil { if sharp { p.buf.WriteString(reflect.Typeof(field).String()) p.buf.Write(nilParenBytes) } else { p.buf.Write(nilAngleBytes) } } else { return p.printField(value.Interface(), plus, sharp, depth+1) } case reflect.ArrayOrSliceValue: if sharp { p.buf.WriteString(reflect.Typeof(field).String()) p.buf.WriteByte('{') } else { p.buf.WriteByte('[') } for i := 0; i < f.Len(); i++ { if i > 0 { if sharp { p.buf.Write(commaSpaceBytes) } else { p.buf.WriteByte(' ') } } p.printField(f.Elem(i).Interface(), plus, sharp, depth+1) } if sharp { p.buf.WriteByte('}') } else { p.buf.WriteByte(']') } case *reflect.PtrValue: v := f.Get() // pointer to array or slice or struct? ok at top level // but not embedded (avoid loops) if v != 0 && depth == 0 { switch a := f.Elem().(type) { case reflect.ArrayOrSliceValue: p.buf.WriteByte('&') p.printField(a.Interface(), plus, sharp, depth+1) break BigSwitch case *reflect.StructValue: p.buf.WriteByte('&') p.printField(a.Interface(), plus, sharp, depth+1) break BigSwitch } } if sharp { p.buf.WriteByte('(') p.buf.WriteString(reflect.Typeof(field).String()) p.buf.WriteByte(')') p.buf.WriteByte('(') if v == 0 { p.buf.Write(nilBytes) } else { p.fmt.sharp = true p.fmt.fmt_ux64(uint64(v)) } p.buf.WriteByte(')') break } if v == 0 { p.buf.Write(nilAngleBytes) break } p.fmt.sharp = true // turn 0x on p.fmt.fmt_ux64(uint64(v)) case uintptrGetter: v := f.Get() if sharp { p.buf.WriteByte('(') p.buf.WriteString(reflect.Typeof(field).String()) p.buf.WriteByte(')') p.buf.WriteByte('(') if v == 0 { p.buf.Write(nilBytes) } else { p.fmt.sharp = true p.fmt.fmt_ux64(uint64(v)) } p.buf.WriteByte(')') } else { p.fmt.sharp = true // turn 0x on p.fmt.fmt_ux64(uint64(f.Get())) } default: v, signed, ok := getInt(field) if ok { if signed { p.fmt.fmt_d64(v) } else { if sharp { p.fmt.sharp = true // turn on 0x p.fmt.fmt_ux64(uint64(v)) } else { p.fmt.fmt_ud64(uint64(v)) } } break } p.unknownType(f) } return false } func (p *pp) doprintf(format string, a []interface{}) { end := len(format) - 1 fieldnum := 0 // we process one field per non-trivial format for i := 0; i <= end; { c, w := utf8.DecodeRuneInString(format[i:]) if c != '%' || i == end { if w == 1 { p.buf.WriteByte(byte(c)) } else { p.buf.WriteString(format[i : i+w]) } i += w continue } i++ // flags and widths p.fmt.clearflags() F: for ; i < end; i++ { switch format[i] { case '#': p.fmt.sharp = true case '0': p.fmt.zero = true case '+': p.fmt.plus = true case '-': p.fmt.minus = true case ' ': p.fmt.space = true default: break F } } // do we have 20 (width)? p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) // do we have .20 (precision)? if i < end && format[i] == '.' { p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end) } c, w = utf8.DecodeRuneInString(format[i:]) i += w // percent is special - absorbs no operand if c == '%' { p.buf.WriteByte('%') // TODO: should we bother with width & prec? continue } if fieldnum >= len(a) { // out of operands p.buf.WriteByte('%') p.add(c) p.buf.Write(missingBytes) continue } field := a[fieldnum] fieldnum++ // Try formatter except for %T, // which is special and handled internally. if field != nil && c != 'T' { if formatter, ok := field.(Formatter); ok { formatter.Format(p, c) continue } } switch c { // bool case 't': if v, ok := getBool(field); ok { if v { p.buf.Write(trueBytes) } else { p.buf.Write(falseBytes) } } else { goto badtype } // int case 'b': if v, signed, ok := getInt(field); ok { if signed { p.fmt.fmt_b64(v) } else { p.fmt.fmt_ub64(uint64(v)) } } else if v, ok := getFloat32(field); ok { p.fmt.fmt_fb32(v) } else if v, ok := getFloat64(field); ok { p.fmt.fmt_fb64(v) } else { goto badtype } case 'c': if v, _, ok := getInt(field); ok { p.fmt.fmt_c(int(v)) } else { goto badtype } case 'd': if v, signed, ok := getInt(field); ok { if signed { p.fmt.fmt_d64(v) } else { p.fmt.fmt_ud64(uint64(v)) } } else { goto badtype } case 'o': if v, signed, ok := getInt(field); ok { if signed { p.fmt.fmt_o64(v) } else { p.fmt.fmt_uo64(uint64(v)) } } else { goto badtype } case 'x': if v, signed, ok := getInt(field); ok { if signed { p.fmt.fmt_x64(v) } else { p.fmt.fmt_ux64(uint64(v)) } } else if v, ok := getString(field); ok { p.fmt.fmt_sx(v) } else { goto badtype } case 'X': if v, signed, ok := getInt(field); ok { if signed { p.fmt.fmt_X64(v) } else { p.fmt.fmt_uX64(uint64(v)) } } else if v, ok := getString(field); ok { p.fmt.fmt_sX(v) } else { goto badtype } // float/complex case 'e': if v, ok := getFloat32(field); ok { p.fmt.fmt_e32(v) } else if v, ok := getFloat64(field); ok { p.fmt.fmt_e64(v) } else if v, ok := getComplex64(field); ok { p.fmt.fmt_c64(v, 'e') } else if v, ok := getComplex128(field); ok { p.fmt.fmt_c128(v, 'e') } else { goto badtype } case 'E': if v, ok := getFloat32(field); ok { p.fmt.fmt_E32(v) } else if v, ok := getFloat64(field); ok { p.fmt.fmt_E64(v) } else if v, ok := getComplex64(field); ok { p.fmt.fmt_c64(v, 'E') } else if v, ok := getComplex128(field); ok { p.fmt.fmt_c128(v, 'E') } else { goto badtype } case 'f': if v, ok := getFloat32(field); ok { p.fmt.fmt_f32(v) } else if v, ok := getFloat64(field); ok { p.fmt.fmt_f64(v) } else if v, ok := getComplex64(field); ok { p.fmt.fmt_c64(v, 'f') } else if v, ok := getComplex128(field); ok { p.fmt.fmt_c128(v, 'f') } else { goto badtype } case 'g': if v, ok := getFloat32(field); ok { p.fmt.fmt_g32(v) } else if v, ok := getFloat64(field); ok { p.fmt.fmt_g64(v) } else if v, ok := getComplex64(field); ok { p.fmt.fmt_c64(v, 'g') } else if v, ok := getComplex128(field); ok { p.fmt.fmt_c128(v, 'g') } else { goto badtype } case 'G': if v, ok := getFloat32(field); ok { p.fmt.fmt_G32(v) } else if v, ok := getFloat64(field); ok { p.fmt.fmt_G64(v) } else if v, ok := getComplex64(field); ok { p.fmt.fmt_c64(v, 'G') } else if v, ok := getComplex128(field); ok { p.fmt.fmt_c128(v, 'G') } else { goto badtype } // string case 's': if field != nil { // if object implements String, use the result. if stringer, ok := field.(Stringer); ok { p.fmt.fmt_s(stringer.String()) break } } if v, ok := getString(field); ok { p.fmt.fmt_s(v) } else { goto badtype } case 'q': if field != nil { // if object implements String, use the result. if stringer, ok := field.(Stringer); ok { p.fmt.fmt_q(stringer.String()) break } } if v, ok := getString(field); ok { p.fmt.fmt_q(v) } else { goto badtype } // pointer, including addresses of reference types. case 'p': switch v := reflect.NewValue(field).(type) { case getter: p.fmt.fmt_s("0x") p.fmt.fmt_uX64(uint64(v.Get())) default: goto badtype } // arbitrary value; do your best case 'v': plus, sharp := p.fmt.plus, p.fmt.sharp p.fmt.plus = false p.fmt.sharp = false p.printField(field, plus, sharp, 0) // the value's type case 'T': if field == nil { p.buf.Write(nilAngleBytes) break } p.buf.WriteString(reflect.Typeof(field).String()) default: badtype: p.buf.WriteByte('%') p.add(c) p.buf.WriteByte('(') if field != nil { p.buf.WriteString(reflect.Typeof(field).String()) p.buf.WriteByte('=') } p.printField(field, false, false, -1) p.buf.WriteByte(')') } } if fieldnum < len(a) { p.buf.Write(extraBytes) for ; fieldnum < len(a); fieldnum++ { field := a[fieldnum] if field != nil { p.buf.WriteString(reflect.Typeof(field).String()) p.buf.WriteByte('=') } p.printField(field, false, false, 0) if fieldnum+1 < len(a) { p.buf.Write(commaSpaceBytes) } } p.buf.WriteByte(')') } } func (p *pp) doprint(a []interface{}, addspace, addnewline bool) { prev_string := false for fieldnum := 0; fieldnum < len(a); fieldnum++ { // always add spaces if we're doing println field := a[fieldnum] if fieldnum > 0 { _, is_string := field.(*reflect.StringValue) if addspace || !is_string && !prev_string { p.buf.WriteByte(' ') } } prev_string = p.printField(field, false, false, 0) } if addnewline { p.buf.WriteByte('\n') } }