// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "tls_arm64.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // SP = stack; R0 = argc; R1 = argv SUB $32, RSP MOVW R0, 8(RSP) // argc MOVD R1, 16(RSP) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD RSP, R7 MOVD $(-64*1024)(R7), R0 MOVD R0, g_stackguard0(g) MOVD R0, g_stackguard1(g) MOVD R0, (g_stack+stack_lo)(g) MOVD R7, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R12 CMP $0, R12 BEQ nocgo MRS_TPIDR_R0 // load TLS base pointer MOVD R0, R3 // arg 3: TLS base pointer #ifdef TLSG_IS_VARIABLE MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g #else MOVD $0, R2 // arg 2: not used when using platform's TLS #endif MOVD $setg_gcc<>(SB), R1 // arg 1: setg MOVD g, R0 // arg 0: G BL (R12) MOVD _cgo_init(SB), R12 CMP $0, R12 BEQ nocgo nocgo: // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R0 ADD $const__StackGuard, R0 MOVD R0, g_stackguard0(g) MOVD R0, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R0 // save m->g0 = g0 MOVD g, m_g0(R0) // save m0 to g0->m MOVD R0, g_m(g) BL runtime·check(SB) MOVW 8(RSP), R0 // copy argc MOVW R0, -8(RSP) MOVD 16(RSP), R0 // copy argv MOVD R0, 0(RSP) BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R0 // entry MOVD RSP, R7 MOVD.W $0, -8(R7) MOVD.W R0, -8(R7) MOVD.W $0, -8(R7) MOVD.W $0, -8(R7) MOVD R7, RSP BL runtime·newproc(SB) ADD $32, RSP // start this M BL runtime·mstart(SB) MOVD $0, R0 MOVD R0, (R0) // boom UNDEF DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 BRK RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8 MOVD buf+0(FP), R3 MOVD RSP, R0 MOVD R0, gobuf_sp(R3) MOVD LR, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD ZR, gobuf_lr(R3) MOVD ZR, gobuf_ret(R3) // Assert ctxt is zero. See func save. MOVD gobuf_ctxt(R3), R0 CMP $0, R0 BEQ 2(PC) CALL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $24-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g BL runtime·save_g(SB) MOVD 0(g), R4 // make sure g is not nil MOVD gobuf_sp(R5), R0 MOVD R0, RSP MOVD gobuf_lr(R5), LR MOVD gobuf_ret(R5), R0 MOVD gobuf_ctxt(R5), R26 MOVD $0, gobuf_sp(R5) MOVD $0, gobuf_ret(R5) MOVD $0, gobuf_lr(R5) MOVD $0, gobuf_ctxt(R5) CMP ZR, ZR // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R6 B (R6) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 // Save caller state in g->sched MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) B runtime·badmcall(SB) MOVD fn+0(FP), R26 // context MOVD 0(R26), R4 // code pointer MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP // sp = m->g0->sched.sp MOVD R3, -8(RSP) MOVD $0, -16(RSP) SUB $16, RSP BL (R4) B runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R26 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMP g, R5 BEQ noswitch MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ noswitch MOVD m_curg(R4), R6 CMP g, R6 BEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R3 BL (R3) B runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVD $runtime·systemstack_switch(SB), R6 ADD $8, R6 // get past prologue MOVD R6, (g_sched+gobuf_pc)(g) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $16, R3 AND $~15, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, RSP // call target function MOVD 0(R26), R3 // code pointer BL (R3) // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD $0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVD 0(R26), R3 // code pointer MOVD.P 16(RSP), R30 // restore LR B (R3) /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3 prolog's LR (R30) // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R8 MOVD m_g0(R8), R4 CMP g, R4 BNE 3(PC) BL runtime·badmorestackg0(SB) B runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R8), R4 CMP g, R4 BNE 3(PC) BL runtime·badmorestackgsignal(SB) B runtime·abort(SB) // Called from f. // Set g->sched to context in f MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD LR, (g_sched+gobuf_pc)(g) MOVD R3, (g_sched+gobuf_lr)(g) MOVD R26, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's callers. MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC MOVD RSP, R0 MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP MOVD g, (m_morebuf+gobuf_g)(R8) // Call newstack on m->g0's stack. MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned) BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R26 B runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R27; \ CMP R27, R16; \ BGT 3(PC); \ MOVD $NAME(SB), R27; \ B (R27) // Note: can't just "B NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-0 B ·reflectcall(SB) TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32 MOVWU argsize+24(FP), R16 DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R0 B (R0) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+16(FP), R3; \ MOVWU argsize+24(FP), R4; \ ADD $8, RSP, R5; \ BIC $0xf, R4, R6; \ CBZ R6, 6(PC); \ /* if R6=(argsize&~15) != 0 */ \ ADD R6, R5, R6; \ /* copy 16 bytes a time */ \ LDP.P 16(R3), (R7, R8); \ STP.P (R7, R8), 16(R5); \ CMP R5, R6; \ BNE -3(PC); \ AND $0xf, R4, R6; \ CBZ R6, 6(PC); \ /* if R6=(argsize&15) != 0 */ \ ADD R6, R5, R6; \ /* copy 1 byte a time for the rest */ \ MOVBU.P 1(R3), R7; \ MOVBU.P R7, 1(R5); \ CMP R5, R6; \ BNE -3(PC); \ /* call function */ \ MOVD f+8(FP), R26; \ MOVD (R26), R0; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R0); \ /* copy return values back */ \ MOVD argtype+0(FP), R7; \ MOVD arg+16(FP), R3; \ MOVWU n+24(FP), R4; \ MOVWU retoffset+28(FP), R6; \ ADD $8, RSP, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ BL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $40-0 MOVD R7, 8(RSP) MOVD R3, 16(RSP) MOVD R5, 24(RSP) MOVD R4, 32(RSP) BL runtime·reflectcallmove(SB) RET // These have 8 added to make the overall frame size a multiple of 16, // as required by the ABI. (There is another +8 for the saved LR.) CALLFN(·call32, 40 ) CALLFN(·call64, 72 ) CALLFN(·call128, 136 ) CALLFN(·call256, 264 ) CALLFN(·call512, 520 ) CALLFN(·call1024, 1032 ) CALLFN(·call2048, 2056 ) CALLFN(·call4096, 4104 ) CALLFN(·call8192, 8200 ) CALLFN(·call16384, 16392 ) CALLFN(·call32768, 32776 ) CALLFN(·call65536, 65544 ) CALLFN(·call131072, 131080 ) CALLFN(·call262144, 262152 ) CALLFN(·call524288, 524296 ) CALLFN(·call1048576, 1048584 ) CALLFN(·call2097152, 2097160 ) CALLFN(·call4194304, 4194312 ) CALLFN(·call8388608, 8388616 ) CALLFN(·call16777216, 16777224 ) CALLFN(·call33554432, 33554440 ) CALLFN(·call67108864, 67108872 ) CALLFN(·call134217728, 134217736 ) CALLFN(·call268435456, 268435464 ) CALLFN(·call536870912, 536870920 ) CALLFN(·call1073741824, 1073741832 ) // func aeshash32(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-24 MOVD p+0(FP), R0 MOVD h+8(FP), R1 MOVD $ret+16(FP), R2 MOVD $runtime·aeskeysched+0(SB), R3 VEOR V0.B16, V0.B16, V0.B16 VLD1 (R3), [V2.B16] VLD1 (R0), V0.S[1] VMOV R1, V0.S[0] AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 VST1 [V0.D1], (R2) RET // func aeshash64(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-24 MOVD p+0(FP), R0 MOVD h+8(FP), R1 MOVD $ret+16(FP), R2 MOVD $runtime·aeskeysched+0(SB), R3 VEOR V0.B16, V0.B16, V0.B16 VLD1 (R3), [V2.B16] VLD1 (R0), V0.D[1] VMOV R1, V0.D[0] AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V2.B16, V0.B16 VST1 [V0.D1], (R2) RET // func aeshash(p unsafe.Pointer, h, size uintptr) uintptr TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-32 MOVD p+0(FP), R0 MOVD s+16(FP), R1 MOVWU h+8(FP), R3 MOVD $ret+24(FP), R2 B aeshashbody<>(SB) // func aeshashstr(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-24 MOVD p+0(FP), R10 // string pointer LDP (R10), (R0, R1) //string data/ length MOVWU h+8(FP), R3 MOVD $ret+16(FP), R2 // return adddress B aeshashbody<>(SB) // R0: data // R1: length (maximum 32 bits) // R2: address to put return value // R3: seed data TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0 VEOR V30.B16, V30.B16, V30.B16 VMOV R3, V30.S[0] VMOV R1, V30.S[1] // load length into seed MOVD $runtime·aeskeysched+0(SB), R4 VLD1.P 16(R4), [V0.B16] AESE V30.B16, V0.B16 AESMC V0.B16, V0.B16 CMP $16, R1 BLO aes0to15 BEQ aes16 CMP $32, R1 BLS aes17to32 CMP $64, R1 BLS aes33to64 CMP $128, R1 BLS aes65to128 B aes129plus aes0to15: CMP $0, R1 BEQ aes0 VEOR V2.B16, V2.B16, V2.B16 TBZ $3, R1, less_than_8 VLD1.P 8(R0), V2.D[0] less_than_8: TBZ $2, R1, less_than_4 VLD1.P 4(R0), V2.S[2] less_than_4: TBZ $1, R1, less_than_2 VLD1.P 2(R0), V2.H[6] less_than_2: TBZ $0, R1, done VLD1 (R0), V2.B[14] done: AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V0.B16, V2.B16 VST1 [V2.D1], (R2) RET aes0: VST1 [V0.D1], (R2) RET aes16: VLD1 (R0), [V2.B16] B done aes17to32: // make second seed VLD1 (R4), [V1.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 SUB $16, R1, R10 VLD1.P (R0)(R10), [V2.B16] VLD1 (R0), [V3.B16] AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V1.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V0.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V1.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V0.B16, V2.B16 AESE V1.B16, V3.B16 VEOR V3.B16, V2.B16, V2.B16 VST1 [V2.D1], (R2) RET aes33to64: VLD1 (R4), [V1.B16, V2.B16, V3.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V30.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V30.B16, V3.B16 AESMC V3.B16, V3.B16 SUB $32, R1, R10 VLD1.P (R0)(R10), [V4.B16, V5.B16] VLD1 (R0), [V6.B16, V7.B16] AESE V0.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V1.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V2.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V3.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V0.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V1.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V2.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V3.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V0.B16, V4.B16 AESE V1.B16, V5.B16 AESE V2.B16, V6.B16 AESE V3.B16, V7.B16 VEOR V6.B16, V4.B16, V4.B16 VEOR V7.B16, V5.B16, V5.B16 VEOR V5.B16, V4.B16, V4.B16 VST1 [V4.D1], (R2) RET aes65to128: VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16] VLD1 (R4), [V5.B16, V6.B16, V7.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V30.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V30.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V30.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V30.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V30.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V30.B16, V7.B16 AESMC V7.B16, V7.B16 SUB $64, R1, R10 VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16] VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16] AESE V0.B16, V8.B16 AESMC V8.B16, V8.B16 AESE V1.B16, V9.B16 AESMC V9.B16, V9.B16 AESE V2.B16, V10.B16 AESMC V10.B16, V10.B16 AESE V3.B16, V11.B16 AESMC V11.B16, V11.B16 AESE V4.B16, V12.B16 AESMC V12.B16, V12.B16 AESE V5.B16, V13.B16 AESMC V13.B16, V13.B16 AESE V6.B16, V14.B16 AESMC V14.B16, V14.B16 AESE V7.B16, V15.B16 AESMC V15.B16, V15.B16 AESE V0.B16, V8.B16 AESMC V8.B16, V8.B16 AESE V1.B16, V9.B16 AESMC V9.B16, V9.B16 AESE V2.B16, V10.B16 AESMC V10.B16, V10.B16 AESE V3.B16, V11.B16 AESMC V11.B16, V11.B16 AESE V4.B16, V12.B16 AESMC V12.B16, V12.B16 AESE V5.B16, V13.B16 AESMC V13.B16, V13.B16 AESE V6.B16, V14.B16 AESMC V14.B16, V14.B16 AESE V7.B16, V15.B16 AESMC V15.B16, V15.B16 AESE V0.B16, V8.B16 AESE V1.B16, V9.B16 AESE V2.B16, V10.B16 AESE V3.B16, V11.B16 AESE V4.B16, V12.B16 AESE V5.B16, V13.B16 AESE V6.B16, V14.B16 AESE V7.B16, V15.B16 VEOR V12.B16, V8.B16, V8.B16 VEOR V13.B16, V9.B16, V9.B16 VEOR V14.B16, V10.B16, V10.B16 VEOR V15.B16, V11.B16, V11.B16 VEOR V10.B16, V8.B16, V8.B16 VEOR V11.B16, V9.B16, V9.B16 VEOR V9.B16, V8.B16, V8.B16 VST1 [V8.D1], (R2) RET aes129plus: PRFM (R0), PLDL1KEEP VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16] VLD1 (R4), [V5.B16, V6.B16, V7.B16] AESE V30.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V30.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V30.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V30.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V30.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V30.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V30.B16, V7.B16 AESMC V7.B16, V7.B16 ADD R0, R1, R10 SUB $128, R10, R10 VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16] VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16] SUB $1, R1, R1 LSR $7, R1, R1 aesloop: AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16] AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16] AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 SUB $1, R1, R1 CBNZ R1, aesloop AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V8.B16, V0.B16 AESMC V0.B16, V0.B16 AESE V9.B16, V1.B16 AESMC V1.B16, V1.B16 AESE V10.B16, V2.B16 AESMC V2.B16, V2.B16 AESE V11.B16, V3.B16 AESMC V3.B16, V3.B16 AESE V12.B16, V4.B16 AESMC V4.B16, V4.B16 AESE V13.B16, V5.B16 AESMC V5.B16, V5.B16 AESE V14.B16, V6.B16 AESMC V6.B16, V6.B16 AESE V15.B16, V7.B16 AESMC V7.B16, V7.B16 AESE V8.B16, V0.B16 AESE V9.B16, V1.B16 AESE V10.B16, V2.B16 AESE V11.B16, V3.B16 AESE V12.B16, V4.B16 AESE V13.B16, V5.B16 AESE V14.B16, V6.B16 AESE V15.B16, V7.B16 VEOR V0.B16, V1.B16, V0.B16 VEOR V2.B16, V3.B16, V2.B16 VEOR V4.B16, V5.B16, V4.B16 VEOR V6.B16, V7.B16, V6.B16 VEOR V0.B16, V2.B16, V0.B16 VEOR V4.B16, V6.B16, V4.B16 VEOR V4.B16, V0.B16, V0.B16 VST1 [V0.D1], (R2) RET TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVWU cycles+0(FP), R0 again: YIELD SUBW $1, R0 CBNZ R0, again RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 4 bytes to get back to BL deferreturn // 3. BR to fn TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16 MOVD 0(RSP), R0 SUB $4, R0 MOVD R0, LR MOVD fv+0(FP), R26 MOVD argp+8(FP), R0 MOVD R0, RSP SUB $8, RSP MOVD 0(R26), R3 B (R3) // Save state of caller into g->sched. Smashes R0. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVD LR, (g_sched+gobuf_pc)(g) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(g) MOVD $0, (g_sched+gobuf_lr)(g) MOVD $0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVD (g_sched+gobuf_ctxt)(g), R0 CMP $0, R0 BEQ 2(PC) CALL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVD fn+0(FP), R1 MOVD arg+8(FP), R0 MOVD RSP, R2 // save original stack pointer MOVD g, R4 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVD g_m(g), R8 MOVD m_g0(R8), R3 CMP R3, g BEQ g0 MOVD R0, R9 // gosave<> and save_g might clobber R0 BL gosave<>(SB) MOVD R3, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD R9, R0 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers /*, plus 32 bytes of callee // save area that lives on the caller stack. */ MOVD RSP, R13 SUB $16, R13 MOVD R13, RSP MOVD R4, 0(RSP) // save old g on stack MOVD (g_stack+stack_hi)(R4), R4 SUB R2, R4 MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) BL (R1) MOVD R0, R9 // Restore g, stack pointer. R0 is errno, so don't touch it MOVD 0(RSP), g BL runtime·save_g(SB) MOVD (g_stack+stack_hi)(g), R5 MOVD 8(RSP), R6 SUB R6, R5 MOVD R9, R0 MOVD R5, RSP MOVW R0, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$40-32 MOVD $fn+0(FP), R0 MOVD R0, 8(RSP) MOVD frame+8(FP), R0 MOVD R0, 16(RSP) MOVD framesize+16(FP), R0 MOVD R0, 24(RSP) MOVD ctxt+24(FP), R0 MOVD R0, 32(RSP) MOVD $runtime·cgocallback_gofunc(SB), R0 BL (R0) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$24-32 NO_LOCAL_POINTERS // Load g from thread-local storage. MOVB runtime·iscgo(SB), R3 CMP $0, R3 BEQ nocgo BL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP $0, g BEQ needm MOVD g_m(g), R8 MOVD R8, savedm-8(SP) B havem needm: MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needm(SB), R0 BL (R0) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R8 MOVD m_g0(R8), R3 MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(R3) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP). // Beware that the frame size is actually 32. MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD RSP, R0 MOVD R0, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -(24+8)(R4) MOVD ctxt+24(FP), R0 MOVD R0, -(16+8)(R4) MOVD $-(24+8)(R4), R0 // maintain 16-byte SP alignment MOVD R0, RSP BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(RSP), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD RSP, R4 ADD $(24+8), R4, R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R0 MOVD R0, RSP MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVD savedm-8(SP), R6 CMP $0, R6 BNE droppedm MOVD $runtime·dropm(SB), R0 BL (R0) droppedm: // Done! RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$24 // g (R28) and REGTMP (R27) might be clobbered by load_g. They // are callee-save in the gcc calling convention, so save them. MOVD R27, savedR27-8(SP) MOVD g, saveG-16(SP) BL runtime·load_g(SB) MOVD g_m(g), R0 MOVD m_curg(R0), R0 MOVD (g_stack+stack_hi)(R0), R0 MOVD saveG-16(SP), g MOVD savedR28-8(SP), R27 RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET // void setg_gcc(G*); set g called from gcc TEXT setg_gcc<>(SB),NOSPLIT,$8 MOVD R0, g MOVD R27, savedR27-8(SP) BL runtime·save_g(SB) MOVD savedR27-8(SP), R27 RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVD ZR, R0 MOVD (R0), R0 UNDEF TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R0 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, R0 // NOP BL runtime·goexit1(SB) // does not return TEXT runtime·sigreturn(SB),NOSPLIT,$0-0 RET // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 SUB $0x10, RSP MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save MOVD runtime·lastmoduledatap(SB), R1 MOVD R0, moduledata_next(R1) MOVD R0, runtime·lastmoduledatap(SB) MOVD 8(RSP), R27 ADD $0x10, RSP RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R3 MOVB R3, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - R2 is the destination of the write // - R3 is the value being written at R2 // It clobbers condition codes. // It does not clobber any general-purpose registers, // but may clobber others (e.g., floating point registers) // The act of CALLing gcWriteBarrier will clobber R30 (LR). TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$216 // Save the registers clobbered by the fast path. MOVD R0, 200(RSP) MOVD R1, 208(RSP) MOVD g_m(g), R0 MOVD m_p(R0), R0 MOVD (p_wbBuf+wbBuf_next)(R0), R1 // Increment wbBuf.next position. ADD $16, R1 MOVD R1, (p_wbBuf+wbBuf_next)(R0) MOVD (p_wbBuf+wbBuf_end)(R0), R0 CMP R1, R0 // Record the write. MOVD R3, -16(R1) // Record value MOVD (R2), R0 // TODO: This turns bad writes into bad reads. MOVD R0, -8(R1) // Record *slot // Is the buffer full? (flags set in CMP above) BEQ flush ret: MOVD 200(RSP), R0 MOVD 208(RSP), R1 // Do the write. MOVD R3, (R2) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. MOVD R2, 8(RSP) // Also first argument to wbBufFlush MOVD R3, 16(RSP) // Also second argument to wbBufFlush // R0 already saved // R1 already saved MOVD R4, 24(RSP) MOVD R5, 32(RSP) MOVD R6, 40(RSP) MOVD R7, 48(RSP) MOVD R8, 56(RSP) MOVD R9, 64(RSP) MOVD R10, 72(RSP) MOVD R11, 80(RSP) MOVD R12, 88(RSP) MOVD R13, 96(RSP) MOVD R14, 104(RSP) MOVD R15, 112(RSP) MOVD R16, 120(RSP) MOVD R17, 128(RSP) // R18 is unused. MOVD R19, 136(RSP) MOVD R20, 144(RSP) MOVD R21, 152(RSP) MOVD R22, 160(RSP) MOVD R23, 168(RSP) MOVD R24, 176(RSP) MOVD R25, 184(RSP) MOVD R26, 192(RSP) // R27 is temp register. // R28 is g. // R29 is frame pointer (unused). // R30 is LR, which was saved by the prologue. // R31 is SP. // This takes arguments R2 and R3. CALL runtime·wbBufFlush(SB) MOVD 8(RSP), R2 MOVD 16(RSP), R3 MOVD 24(RSP), R4 MOVD 32(RSP), R5 MOVD 40(RSP), R6 MOVD 48(RSP), R7 MOVD 56(RSP), R8 MOVD 64(RSP), R9 MOVD 72(RSP), R10 MOVD 80(RSP), R11 MOVD 88(RSP), R12 MOVD 96(RSP), R13 MOVD 104(RSP), R14 MOVD 112(RSP), R15 MOVD 120(RSP), R16 MOVD 128(RSP), R17 MOVD 136(RSP), R19 MOVD 144(RSP), R20 MOVD 152(RSP), R21 MOVD 160(RSP), R22 MOVD 168(RSP), R23 MOVD 176(RSP), R24 MOVD 184(RSP), R25 MOVD 192(RSP), R26 JMP ret